任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要内容之一。
开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。另外,在计算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。
图2-30是分析计算开关变压器线圈之间漏感的原理图。下面我们就用图2-30来简单分析开关变压器线圈之间产生漏感的原理,并进行一些比较简单的计算。
在图2-30中,N1、N2分别为变压器的初、次级线圈,Tc是变压器铁芯。r是变压器铁芯的半径,r1、r2分别是变压器初、次级线圈的半径;d1为初级线圈到铁芯的距离,d2为初、次级线圈之间的距离。为了分析计算简单,这里假设变压器初、次级线圈的匝数以及线径相等,流过线圈的电流全部集中在线径的中心;因此,它们之间的距离全部是两线圈之间的中心距离,如虚线所示。
设铁芯的截面积为S,S=πr2;初级线圈的截面积为 S1,S1=πr21;次级线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S;次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1,在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量为 φ1';电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。
图2.30:开关变压器线圈之间产生漏感的原理
由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为:
电流I2流过变压器次级线圈N2产生的磁通量
(2-95)、(2-96)式中,μ0sd2H2=φ2就是变压器次级线圈N2对初级线圈N1的漏磁通;因为,这一部分磁通没有穿过变压器初级线圈 N1。漏磁通可以等效成是由一个电感单独产生,这个电感就称为漏感,记为Ls。同理,也可以求得流过变压器初级线圈N1中的电流I1产生的磁通量为:
流过变压器初级线圈N1中的电流I1产生的磁通量
磁通量计算式
(2-96)式中,咋看起来,变压器初级线圈N1产生的磁通量φ1全部穿过变压器次级线圈N2,它们之间应该不存在漏磁通;但是,初级线圈在面积S1中产生的磁通φ1的方向与在面积Sd2中产生的磁通φ1的方向,正好互相相反;因此,变压器初级线圈N1在面积Sd2中产生的磁通φ1,仍然称为变压器初级线圈N1对变压器次级线圈N2的漏磁通,其等效电感同样称为漏感。
关键字:开关电源 变压器 漏感
编辑:探路者 引用地址:详解开关电源变压器的漏感
推荐阅读最新更新时间:2023-10-12 22:38
工程师分享反激式开关电源的零电压开关设计
反激式 开关电源 以电路简单电磁干扰相对小而得到广泛应用,对开关电源的输出电压尖峰和EMI也提出了更高的要求,通常减小EMI的方法主要是采用自激型反激式开关电源,用开关速度相对慢的双极晶体管作为主开关;加大缓冲电路电容量来降低关断过程的dz/dt,di/dt产生的EMI用减缓导通过程减小开通EMI,付出的代价是电源效率下降,发热量大,可靠性下降。因而需要一种低EMI,高效的反激式开关电源,软开关反激式开关电源,便是比较理想的解决方案。 零电压开关 零电压 开关反激式开关电源主电路如图1 主要波形如图2,电路工作过程分为四个阶段:开关管关断及缓冲电路作用阶段,变压器释放储能阶段,缓冲电路复位阶段,开关管导通阶段。 1
[电源管理]
开关电源转换器高性能碳化硅(SiC)功率半导体器件
进入21世纪,开关电源技术将会有更大的发展,这需要我国电力电子、电源、通信、器件、材料等工业和学术各界努力协作,沿着下述方向,开发与开关电源相关的产品和技术。
碳化硅SiC是功率半导体器件晶片的理想材料,其优点是禁带宽,工作温度高(可达600℃)、热稳定性好、通态电阻小、导热性能好、漏电流极小、DNI结耐压高等,有利于制造出耐高温的高频大功率的半导体开关器件,如SiC功率MOSFET和SiC IGBT等。
[电源管理]
基于改进启动回路的反激式开关电源设计
1 前言
开关电源 具有高效率、低功耗、体积小、重量轻等显著优点,现已成为稳压电源的主流产品。本文以电流型PWM控制芯片UC3844B设计了一种高效的单端反激式、4路隔离输出的辅助电源系统,并针对传统启动回路中直流母线侧能量浪费的缺点,设计了一种新型控制芯片启动回路。实验结果表明,设计的单端反激式开关电源具有良好的工作性能,改进型启动电路能够有效缩短启动时间,提高了电源效率。
2 UC3844B芯片介绍
UC3844B是一种高性能固定频率电流模式的PWM控制集成电路芯片。该集成电路的特点是:具有震荡器、温度补偿参考、高增益误差放大器、电流取样比较器和大电流图腾柱输出,是驱动功率MOSFET的理想器件。其内部结构及
[电源管理]
什么是柜式变压器,什么是组合式变压器
箱式变压器也称为组合式变压器。 组合式变压器首先由美国有关电气公司开发。在美国叫基座式变压器,英文名称为Padmounted transformer,在国内也称美式箱变。这种变压器的熔断丝、多工位环网负荷开关、无励磁调压分接开关都作为变压器的部件装在变压器油箱内,在油箱外很容易更换熔断丝或操作负荷开关而改变变压器的运行工况。高压侧由可以带负荷插拔的肘形电缆输入电能,油箱外另装低压出线仓,仓内有空间可按要求而加装保护装置与测量仪表。所有带电部位都在箱内,无裸露带电部分。因为主要部件都在油箱内,故我们称它为组合式变压器,而不称它为箱式变电站。但组合式变压器也具有箱式变电站的功能。高压侧装有六个电缆插座,可使变压器接入环网供电系统
[模拟电子]
开关电源转换器便携式电子设备用燃料电池电源DC/DC转换器
随着电子产品小型化与功能多样化风潮的兴起,便携式电子通信产品大行其道,如手提电脑、手机、数码相机等。电池的性能将直接影响电 子产晶的使用时间,以及其体积的大小,甚至销售量;曲于电子产品功能增加的速度、小型化及轻型化的速度加快,对电力的需求世越来越大,当前锂离子电池的能量密度已经不能满足需要了,即已经不能再满足便携式眭脑、移动电话、PDA等电子设备的要求。例如,一台新型的P4笔记 本电脑平均功耗在100W左右,若工作10h则需1kW·h,用7.4 W·h的锂离子聚合物电池供电需要140块,重量可达5~6 kg,高性能的CPU要求 400A/μs的转换速率和100A以上的峰值电流,到2005年后,此值将分别增加到1000A/μs和
[电源管理]
开关稳压器设计的PCB布局布线
开关模式电源用于将一个电压转换为另一个电压。这种电源的效率通常很高,因此,在许多应用中,它取代了线性稳压器。
开关频率与开关转换
开关模式电源以一定的开关频率工作。开关频率既可以是固定的(例如在PWM型控制中),也可以根据某些因素而变化(例如在PFM或迟滞型控制中)。无论何种情况,开关模式电源的工作原理,都在于它有一定的开启时间Ton和一定的关闭时间Toff.图1显示了一个50%占空比的典型开关周期。这意味着,在完整周期T的50%时间里,转换器中有某一电流;在另外50%时间里,转换器中有不同的电流。
当我们考虑系统噪声时,实际的开关频率(换言之,周期长度T)并不是很重要。如果它
[电源管理]
如何去测试“高频开关电源”噪声
这篇文章以实际测试案例说明了测量电源纹波和测量电源噪声在示波器带宽要求上的不同及不同带宽所引起的测量结果的巨大差异。文章给出了坚硬的结论和测量结果。 项目描述 硬件电路的很多问题都和电源相关,好的电源设计对于整个硬件电路至关重要;这篇文章是从一个实际的案例来谈一谈如何使用示波器较准确的测量电源的噪声。 测量对象是在市场上购买的一款IPAD扩容外设。此设备是通过在IPAD上安装对应的APP,在充电口加入外围模块来实现对IPAD的扩容。 这一款设备所用的存储介质是MicroSD卡。我们对其中MicroSD卡存储部分的信号进行检测,检测这一部分回路是否符合SD规范。在使用示波器检测SDVCC电压的时候,根据对电源纹波的测量经
[测试测量]
智能高频开关电源微机监控模块的研制
1 前言 高性能、高可靠性和高效率的直流电源系统在电力、电信、石化以及冶金等诸多领域中都有着相当广泛的应用。随着高频开关电源技术、应用电子技术和计算机技术的高速发展,直流高频开关电源系统依靠它的高精度、低纹波、高效率及功率因数等优越性能,正在逐步取代传统的可控硅整流装置。随着阀控式蓄电池(免维护蓄电池)越来越多地应用于直流电源系统,以及对直流系统的苛刻要求,高频开关电源的应用也日益广泛。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使阀控式蓄电池的使用寿命大大增加。此外,由于智能直流高频开关电源系统可以完全处于微机的智能化控制之下而不需要人为干预便可完成对整个系统的测量和控制。因此,采用智能高频开关电
[单片机]