1 总体方案的设计
设计一个具有3个八度音程的电子音乐自动循环播放电路,具体曲目可以由设计者自由编辑,以简谱的二进制编码形式存放在ROM的数据文件中。
设计要求如下:
(1)采用5位二进制码表示音高信息,曲谱码存储器的地址由时值计数器控制,计数频率按乐曲的演奏速度选择,每个脉冲周期是所选曲谱中最短音符的时值。存储器在时值计数脉冲作用下顺序输出音高码控制分频器。
(2)采用20Hz~20kHz的音频脉冲信号控制蜂鸣器,可以使其根据控制信号频率发出不同的音调。
音乐播放控制电路设计方案原理框图如图1所示。
2 设计任务分析
2.1音高编码和分频控制
计数器模值控制的方法很多,改变预置数控制模值是比较简单的一种。分频计数器的预置数与分频率和计数方式、预置方式有关。当采用减计数器、并以计数器的溢出信号(CarryOut)实现异步预置控制时,计数器的模(分频率)等于预置数。比如,当计数脉冲频率为10MHz时,若希望产生音高“5”,并考虑占空比整形的二分频作用,分频系数(计数器的模)应该是3188.9,四舍五入后的计数器预置数应该是3189。其溢出信号的频率为3135.8Hz,控制蜂鸣器的信号频率为1567.9Hz,满足音高频率要求。若采用同步预置方式,则计数器的预置数应该是模减1,为3188。由于计数器的溢出信号可能出现冒险干扰,采用同步预置的方法比较安全。
分析表1可见,表中3个不同音程相同音名(同一行)的信号频率都相差一倍。
即音程升、降8度时,频率增加或减小一倍。所以,若分频计数器的计数脉冲频率降低一倍时,蜂鸣器发出的音调降低8度。比如,当分频率仍为3189,但计数脉冲频率为5MHz时,控制蜂鸣器的信号频率为784Hz,为中音“5”。
因此若采用模值和输入脉冲频率都可控的计数器实现信号分频,可根据音程码选择分频计数器的输入脉冲频率fs、根据音名码控制分频计数器的模值N,如图2所示。
3个8度音程的21个音高至少需要5位二进制码表示。为了控制方便,考虑将音名和音程分别编码:7个音名和休止符采用3位二进制码表示,控制分频器计数器的预置数实现模值N修改;3个音程用2位二进制码表示,控制分频器的计数脉冲频率fs。
2.2 音长控制
曲谱存储单元的数据输出时间是时值计数脉冲的一个周期,决定了该单元音符的持续时间。所以,与计数脉冲周期相同时值的音符为音长的度量单位,其音符码占1个存储单元。其他音符根据其时值长短占据不同数量的存储单元。比如,若以8分音符的时值作为存储器地址计数器的脉冲周期,则8分音符码占1个存储单元,4分音符占2个存储单元,2分音符占4个存储单元,以此类推。
因此,可以所选曲谱的最短音符作为时值的度量单位。比如,图3所示的《梁祝》曲谱中最短的音符为8分音,若其编码存放1个存储单元,则时值计数脉冲周期为一个8分音长时间,可选O.5s。曲谱中的四分音符码需要存放2个单元,一拍延长音也需要2个单元。该段曲谱有8个音节,每个音节是一个全音(8个8分音),演奏总时值为8×8个8分音。所以,存储曲谱编码的存储器需要64个存储单元。
2.3 音强控制
音的强度也称音的力度,体现了乐曲的情感元素。由于本设计实现的是简单的电子音乐播放,无法表现音强的不同。而且,参考方案还不能区别相同音高的音符连续与否。比如,两个八分音符“11”的总时值与一个四分音符“1”的时值相同,但体现的乐声是不同的。前者是两个强8分音,而后者可以认为是一个强8分音和一个弱8分音构成。为了解决这个问题,可以在连续的相同强音间加一个极短促的间断区别两者的不同,间断时间可以是几个毫秒。这样,在音符编码中应该有一位码控制。
如果间断音码单独占1个存储单元,可设置间断音标志,控制时值计数器状态为间断信息单元地址时计数频率改变,使间断码输出的时间为间断音长;如果间断音码与强音码存放同一单元,可触发数字单稳态电路产生问断控制信号EN。
2.4 乐曲的循环播放控制
为了实现乐曲的循环播放,应该在乐曲结束时使曲谱表的查表地址回到初始值。可在曲谱表的最后一个单元中存放一个结束符,结束符的编码可以利用音程码的冗余码。电路采用逻辑门对音程码进行判断,当出现结束符码时控制时值计数器复位,乐曲重新开始演奏。
2.5 曲谱编码举例
设音符的6位二进制编码中,最高位为间断音控制,中间2位为音程码,最低3位为音名码。每个8分音存放于1个存储单元,四分音符码占2个存储单元。若音名码用其简谱数符对应的二进制码表示,而低、中、高三个音程分别用"01”,“00",“10”三组码表示,“11”为结束符码,则图3曲谱码存储表如表2所示。表中6位二进制音符码用2位八进制数表示。
3 电路的实现
根据设计电路原理框图,曲谱码以分频数编码,音高信号分频由一个可预置的模N计数器实现。分频系数表和曲谱表都存储在ROM中。若希望控制蜂鸣器的信号占空比为50%,分频器的输出信号采用二分频电路实现占空比整形,但注意信号频率被降低一半。电路原理框图中M分频器的作用是产生合适的时值计数脉冲频率。电路的顶层原理图如图4所示。
4 结语
FPGA技术已成为电子系统设计领域现代化的标志。本文将FPGA用于电子技术课程设计,取得了较好的效果。通过本设计激发了学生学习的兴趣,拓宽了学生的思路,为学生今后的毕业设计和从事电子技术方面的科研、开发工作打下了良好的基础。
上一篇:电源工程师,你该何去何从?
下一篇:基于位线循环充电SRAM模式的自定时电路设计
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况