透析:Boost型功率因数校正器的电磁兼容

最新更新时间:2011-09-14来源: 互联网关键字:boost型功率因数  电磁兼容 手机看文章 扫描二维码
随时随地手机看文章

0、 引言 

为了减少对交流电网的谐波污染,已经推出了一些限制电流谐波的标准,如IEC1000-3-2 ClassD标准,要求必须采取措施降低输入电网的电流谐波含量,提高功率因数。 

传统的二极管电容对输入信号进行整流滤波时,只在输入交流电压的峰值部分才有输入电流,导致产生了很大的电流谐波含量,严重干扰了电网,远不能达到标准要求。为了使输入电流谐波满足要求,必须加功率因数校正(PFC)。比较成熟且应用广泛的是两级方案,它们有各自的功率器件和控制电路。PFC级使线电流跟随线电压,使线电流正弦化,很容易达到高功率因数,减少谐波含量。尤其是近年来,随着电力电子技术的迅猛发展,大量电力电子装置的应用对电网产生严重的谐波干扰,带来严重的危害。所以各国都提出相应的EMC(电磁兼容)标准,严格规定接入电网的设备的谐波干扰的允许水平。我国推行的3C认证标准,要求所有电气产品都必须通过该认证才可以出售,其中该标准很重要的部分就是EMC标准。

1    电源参数 

大量接入电网的用电设备都是通过把市电整流成直流后供给负载的,而传统常用的是电压型不控整流,也就是二极管桥式整流接大电容平波的方法。这种整流电路是一种非线性器件和储能元件的组合,虽然输入交流电压是正弦的,但是二极管导通角非常小,输入电流畸变严重,呈脉冲状,如图1所示。


图1    不控整流输入电流、电压波形 

PFC技术就是通过在不控整流电路中加入DC/DC开关变换器,应用电流反馈技术,使输入端电流波形能跟踪交流输入电压波形,从而使输入端电流接近正弦。本文讨论典型的Boost型PFC电路设计中的电磁兼容问题。 

该PFC电路的技术参数为: 

输入    交流150~270V,50~60Hz;

输出    直流380~400V,纹波<5%; 

功率    600W; 

开关频率    100kHz; 

校正后功率因数    >0.99。 

电路基本原理图如图2所示。

图2    基于UC3854的功率因数校正器原理图

2    基于UC3854的PFC工作原理 

设计是工作于电感电流连续模式(CCM)下的Boost电路,采用的是Unitrode公司的专用PFC芯片UC3854。该芯片的核心是一个模拟乘法器,其输出电流Imo的幅值由电压环输出决定,而波形由输入电压的采样Iac决定,在电路稳定时,有ImoRmo正比于IIRs。因为Imo是与输入电压同相的正弦波,所以Ii也是正弦波,这样也就实现了PFC。 

主电路基本参数为:输入Boost电感L=1mH,C=470μF,最大输入电流有效值为4A,开关管为IRF460,二极管为快恢复二极管RHRP1560。



3    Boost型PFC的电磁兼容问题

3.1    电磁干扰源[1] 

电路的主要电磁干扰源有多种,最主要的是开关功率器件和变流电路在开关过程中引起的电磁噪声。电力电子装置无论是主电路的功率半导体器件,还是控制电路的高速集成电路,在器件开关过程中,都存在着很高的di/dt,它们通过线路或元器件的引线电感引起瞬态电磁噪声,频率可高达几十kHz甚至几百kHz,是不可忽视的噪声源。下面对干扰源一一分析。 

IRF460为功率场效应管(MOSFET),属于多子器件,不存在反向恢复问题,但是他的开关速度很高,开关过程中产生的di/dt(dv/dt)可达很高的数值,作用在电路中的寄生电感(电容)上,会产生很高的瞬态电压电流和引起振荡。如设开关时间为10ns,引线电感为500nH,开关过程中最大的电流可以达到6A,则引线上产生的电压为 500×10-9× =300V 

如此大的脉冲电压(电流)会造成严重的电磁干扰。 二极管开关过程中也会产生噪声。二极管开通时电流迅速增大,但是其管压降不是立即下降,而是出现一个快速的上冲,则导致一个宽带的电磁噪声。而在关断时,由于PN结长基区中大量过剩少数载流子需要复合,从而产生很大的反向恢复电流,此电流与关断电流和关断速度成正比。在高速、大电流情况下,该反向电流会相当大,而且在开通时叠加在开关电流上,严重时会把开关器件烧毁。所以必须选用有快恢复特性的二极管,尽量减少反向恢复电流。

3.2    电磁干扰的耦合途径[1] 

高频开关电源造成的电磁噪声耦合到被干扰对象有两种方式:传导方式和辐射方式。根据电磁噪声耦合特点,传导耦合可分为直接传导耦合、公共阻抗耦合和转移阻抗耦合三种。本电路中,直接传导耦合、公共阻抗耦合和辐射耦合是应该重点考虑的。 

直接传导耦合是指噪声通过导线或寄生元件等直接耦合到被干扰对象,如Ldi/dt可以通过导线耦合。所以,在实验电路中,应该尽量缩短导线的长度。当然,最佳的方法是应用零电流开关(ZCS)软开关技术。

公共阻抗传导耦合是噪声通过设备的公共接地线以及接地网络中的公共阻抗产生公共地阻抗耦合。如果地线安排不当,地线会受到很大的干扰,通常可以检测到幅值高达几V的毛刺,电路也就不能正常工作了。所以,应该合理安排接地,尽量把地线安排较短,而且功率地和信号地分开。经过这样处理之后,地线上的毛刺将明显得到抑制。 

辐射耦合是指电磁噪声的能量,以电磁场能量的形式,通过空间辐射传播,耦合到被干扰的设备(电路)。在本电路里,开关和二极管是最大的电磁噪声源,电磁噪声会辐射到电路的其他部分。被干扰电路接受电磁噪声的能量与该电路回路的面积成正比,所以,必须在安排电路器件时尽可能地缩小电路回路的面积。

4    实验结果 

本实验的电路是基于UC3854的Boost型功率因数校正器,工作模式为电流连续模式,输出为380~400V直流电压,输出功率为600W。 

在实验中,要合理安排元器件布局和地线,尽量缩短引线长度和减小主电路回路的面积,主电路和控制电路分开安排。这样,电磁兼容问题可以得到很大的改善。从图3、图4实验波形看,基本实现PFC功能,而且波形所受干扰比较小。


 图3    开关驱动波形

 

图4    输入电流、电压(衰减10倍)波形

5    结语 

本文通过分析Boost型PFC电路的电磁兼容问题,如干扰源、耦合途径等,提出在实际实验中解决的方法,并通过实验验证。

关键字:boost型功率因数  电磁兼容 编辑:冰封 引用地址:透析:Boost型功率因数校正器的电磁兼容

上一篇:基于PCI总线模块的多通道串行数据采集系统设计
下一篇:如何分析移动设备中的电池消耗

推荐阅读最新更新时间:2023-10-18 15:42

关乎汽车安全的电磁兼容技术
你有没有想到,路上行驶的汽车可能会影响到军用雷达的工作?汽车的电子设备会危及到自身的正常行驶?车载电话所产生的电磁干扰也会影响到汽车的行驶安全?这些都是汽车电磁干扰所带来的影响,如果汽车电磁的兼容性能良好,那么这些干扰将会最大限度避免。近日,在北京召开的一个有关汽车电磁兼容的研讨会上,有专家提出,由于关乎汽车的行驶安全,汽车电磁兼容技术已经日益受到重视。 汽车电子充满干扰 过去,汽车电子带给人们的是更多舒适与便利,如采用电动升降窗、中控锁等,这些产品取代了现有的机械系统,眼下已经越来越多地扩展到与安全系统相关的应用上。业内人士向记者表示,汽车电子已经进入到了汽车的控制系统之中,如提供重要的驾驶员信息、控制发动机、避撞监测及
[嵌入式]
电磁兼容与电路保护技术探析
  便携设备面临着诸多潜在的电磁干扰(EMI)/射频干扰(RFI)源的风险,如开关负载、电源电压波动、短路、雷电、开关电源、RF放大器和功率放大器及时钟信号的高频噪声等。因此,电路设计和电磁兼容性(EMC)设计的技术水平对产品的质量和技术性能指标将起到非常关键的作用。   电磁干扰通常有两种情形,即传导干扰和辐射干扰。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络。因此对EMC问题的研究实际上就是对干扰源、耦合途径、敏感设备三者之间关系的研究。电磁兼容设计就是针对电子产品中产生的电磁干扰进行优化设计,使之成为符合电磁兼容性标准的产品。   在电
[单片机]
电磁兼容抗扰度测试仪器的校准---电压跌落DIPS篇
电子电器产品在进入市场之前一般都需要经过电磁兼容测试,主要是为了避免电子产品在使用的过程中会受到来自外界电磁干扰。 随着电磁兼容抗扰度测试仪器的普及,电磁兼容测试仪器的校准计量也就显得越来越重要了! 电源暂降与跌落抗扰度测试符合标准:GB/T17626.11,IEC61000-4-11,该项测试项目主要是由电网、变电设施的故障或负荷突然出现大的变化所引起的。电压变化是由连接到电网的负荷的连续变化引起的。如果EUT对电源电压的变化不能及时作出反应,就有可能引发故障。 深圳市华瑞高电子技术有限公司的峰值冲击电流校准件适用于额定输入电流每相不超过16A、连接到50Hz/60Hz交流电网的计量。 在该项测试的计量中,我们
[测试测量]
<font color='red'>电磁兼容</font>抗扰度测试仪器的校准---电压跌落DIPS篇
一种车顶天线布局的电磁兼容的实现
    1.引言     随着电子信息对抗系统、雷达系统、武器控制系统、指挥决策系统、通讯导航系统的发展与升级换代,在有限的频谱范围内,工作频率的高度密集甚至是重叠、单位体积内电磁功率密度的迅速增加、各种电子设备的电磁干扰和敏感度的不断提高。特别是作为对电磁环境有重大影响的载体上的天线,其类型与数量存在着增加的趋势。平台上的天线少则几部,多则十几部几十部,有的甚至达到天线林立的程度。这些状况造成载体内部及其周围空间的电磁环境越来越复杂,从而导致电磁兼容的问题日益突出。作为直接影响和制约系统电磁兼容性的天线,其电磁兼容问题,包括理论分析预测、设计技术和试验调试等自然成为关注的问题。     本文采用一种基于遗传算法的天线优化
[嵌入式]
浅谈无极灯的电磁兼容问题
  无极灯分为高频无极灯和低频无极灯,频率分别为200-250KHz、2.65MHz,作为功能的激励源和干扰的发生源,这些频段频点让人十分的纠结。没有了它,功能没了;可有了它,干扰又来了,虽然纠结,但“因噎是否该废食”却是一个根本不必思考的问题。我们只能接受,然后想办法处理掉其负面影响。   无极灯的电磁兼容问题有两个,分别是传导和辐射。   传导是通过导电的电缆线发出的;   辐射是通过空间的非金属壳体、金属壳体的缝隙、导线三方面中的某一种或几种发出来的。   这两类问题,解决的思路不一样,我们在整改的过程中经常遇到类似的技术咨询问题。电话里交流了半天以为是传导,其实是空间辐射的。   传导解
[电源管理]
电磁兼容外场测试中的干扰抵消技术
  由于大型电子设备在进行电磁兼容(EMC)性考核时,很难进入屏蔽室进行而只能在室外开阔场地进行,从而难以控制测试时的环境背景噪声电平,使测试结果出现很大误差。如何区分背景噪声信号,鉴别出受试设备发出的被测信号一直是EMC测试中的一个难题。在各种不同的背景信号中,同频干扰与被测信号无法通过频谱进行分离,本文的目的就是想用空间分离技术,通过适当的测试方法,对于任意方向的同频干扰信号进行有效的拟制,从而得到有效的测试结果。   消除同频干扰的基本方法   合成场分析   在图1所示的测试环境中,设待测信号与干扰信号均为线极化(在工程实际中,这样的假设是合理的),待测信号电场强度为:   
[测试测量]
<font color='red'>电磁兼容</font>外场测试中的干扰抵消技术
如何做好电源电子设备的电磁兼容
  随着电子技术的迅速发展,现代的电子设备已广泛地应用于人类生活的各个领域。当前,电子设备已处于飞速发展的时期,并且这个发展过程仍以日益增长的速度持续着。电子设备的广泛应用和发展,必然导致它们在其周围空间产生的电磁场电平的不断增加。也就是说,电子设备不可避免地在电磁环境(EME)中工作。因此,必须解决电子设备在电磁环境中的适应能力。电磁兼容性(EMC)是一门关于抗电磁干扰(EMI)影响的科学。   电磁干扰源的分类   各种形式的电磁干扰是影响电子设备电磁兼容性的主要因素,因此,它是电磁兼容性设计中需要研究的重要内容。电磁干扰源可分为内部干扰和外部干扰。内部干扰是指电子设备内部各元部件之间的相互干扰,包括工作 电源 通过线路的
[电源管理]
反激式开关电源的变压器电磁兼容性设计
随着功率半导体器件技术的发展,开关电源高功率体积比和高效率的特性使得其在现代军事、工业和商业等各级别的仪器设备中得到广泛应用,并且随着时钟频率的不断提高,设备的电磁兼容性(EMC)问题引起人们的广泛关注。EMC设计已成为开关电源开发设计中必不可少的重要环节。 传导电磁干扰(EMI)噪声的抑制必须在产品开发初期就加以考虑。通常情况下,加装电源线滤波器是抑制传导EMI的必要措施l1l。但是,仅仅依靠电源输入端的滤波器来抑制干扰往往会导致滤波器中元件的电感量增加和电容量增大。而电感量的增加使体积增加;电容量的增大受到漏电流安全标准的限制。电路中的其他部分如果设计恰当也可以完成与滤波器相似的工作。本文提出了变压器的噪声活跃节点相
[电源管理]
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved