太阳能电池生产过程中的污染问题

最新更新时间:2011-09-17来源: 互联网关键字:太阳能电池  污染问题 手机看文章 扫描二维码
随时随地手机看文章

生产环境中经常和重复出现的污染严重影响生产效益,在每个可能出现材料表面污染的工序使用接触式清洁机,可以显著提高生产效益和太阳能电池的功效。

当今光伏电池生产厂都面对不断提高生产效益、改善其产品工作效率的压力,另外原材料价格的剧烈变化也使其势在必行。影响生产效益和产品功效提高主要问题之一是生产环境中经常和重复出现的污染,如果在涂布、印刷或层压工序前材料表面有污染,生产效益将会被严重影响。

本文将注重污染的影响;污染的主要来源及其可能引发的问题;并提出减小污染问题的可行性解决方案。

污染如何影响太阳能模块的生产,取决于于生产哪一种太阳能模块。模块的生产有三种:

第一代太阳能电池 – 硅片: 尘埃和污染物会影响丝网印刷过程,引发许多问题如‘立碑现象’、开路和短路等。当锡焊接点中的污染物挥发和快速膨胀时,将导致漏焊和干焊。随后太阳能电池被封装在EVA薄膜中,如果薄膜和电池之间有灰尘或污染颗粒,因为遮挡阳光,最终产品的工作效率会降低。即使是肉眼看不见的微小污染颗粒,因为会有‘帐篷效应’将在复压的表面出现‘鱼眼’,从而产生视觉上的次品。这些都是制造厂要尽量避免的。

第二代太阳能电池 – 真空合金:它更加高效,但是在进入沉积工序前基片的表面必须保证是非常清结的。如果在连线电路中有污染颗粒,会出现和第一代工艺一样的问题,例如‘鱼眼’和‘立碑’等。同样,如果要达到最佳的电池工作效率,在封装阶段中玻璃或薄膜表面必须被清洁。

第三代太阳能电池利用与电子行业类似的丝网印刷技术。通常这类电池没有第一代和第二代高效,所以因为污染物而降低其效率的问题显得更加严重。基片和模版必须在每个印刷步骤之前被彻底的清洁。一般用于丝网印刷的基片是塑料材料或金属箔片,这些进入涂布或沉积前的基片从制造厂直接到达,通常都会带有污染残留物。例如,塑料薄膜一般会根据客户要求被裁切成不同的尺寸,碎屑很可能残留在材料的表面,静电吸引尘埃也是一个严重的问题。

污染不仅仅是在生产过程中引起问题。如果污染物是导电材料,会造成成品腐蚀,很可能只有在产品的后期,当存放在库房的时候才会被发现。

那么生产过程中的污染源来自哪里呢?

大量潜在的污染源包括人类的毛发、织物纤维、脱落表皮(空气尘埃的主要来源之一)、天花板、地面、包装和支架,甚至称作‘无脱落纤维’的含有酒精类物质的清洁布也会成为一种污染源。‘无脱落纤维’意味着织物没有表面脱落的纤维,但是当用其擦电池基片或模版组件时,纤维很可能脱落并残留在被清洁物表面上。静电是引发污染的另一个主要原因。一般电池板是由绝缘材料构成,易含有静电电荷。因此,松散的颗粒会立刻被电池板表面吸引。运输、去包装或用抹布清洁电池板都会产生静电。特别在印刷、涂布或压层等需要进行表面处理的工序时,清洁的基片对产品质量、减少浪费和停机时间,直至提高生产效率和企业利润都是至关重要的。

所以怎样做才能最小化因为污染而对太阳能电池产生的影响呢?如何才能与污染和静电,还有它们对生产的影响作斗争呢?当前有两种表面除尘、除静电的方法: 非接触式和接触式除尘。

非接触式除尘是指清洁设备不直接与被清洁的材料表面接触,例如吸尘、吹尘或超声波。结合除静电棒和吸尘直接与卷材机械性接触以达到除尘效果。如果是吸尘系统,在整个表面的吸尘力必须平均分布。如果连接被清洁物和吸尘机的密封不严,清洁操作的有效性会降低。正确的位置和设置是至关重要的,同样速度、宽度和被清洁材料的类型也要和吸尘输出匹配。缺点是工作环境周围的污染残余会在吸尘设备除尘过程中被激活。同样,如果是吹尘的方式,同样要保证材料表面的吹尘空气力要一致,另外,被吹气的污染颗粒或尘埃很可能散落在生产线的其它地方,或者被材料表面的静电二次俘获。非接触式除尘方法在清除中等程度的污染上(污染物大约25微米)是相对成功的。然而,当今太阳能电池制造和使用者对质量的要求不断提高,因为其很难有效突破被清洁材料的表面空气层,只能清除大概25微米的污染物,这样的清洁表现显然是不够的。移动中的卷材或片材会形成一个空气层,如果要达到高效清洁的效果,一定要突破这个空气层。有些人认为,高压的空气一定会突破这层,然后吹掉表面上的颗粒。但在现实中这个应用不起作用。因为污染源散布在空气中,然后在清洁后的材料的另一点停留。所以,传统的非接触式清洁机如超声波或气流型,因其不能突破被清洁材料的表面空气层所俘获的污染颗粒,所以不是最有效的方式。

另一种选择是利用已经被半导体行业所证实的技术 —— 接触式清洁技术 。接触式除尘技术始于70年代末80年代初,英国的Teknek研发并制造了世界上第一台接触式清洁机。接触式清洁通常利用清洁滚轮与被清洁物表面的物理接触达到清洁、除尘的目的。接触式清洁辊是聚合物覆盖的胶辊,提供一种高效的卷材和单张清洁方式。当清洁辊与基片表面污染物有物理接触时,污染物转移到清洁辊表面。这是夹压式的方法,清洁辊同时挤压基材表面的空气层。结果能够在高速的情况下高效(96%以上)清除微小的污染物(通常小于10微米)。它不像毛刷式或机械刷的清洁系统会划伤敏感材料表面(如薄膜),橡胶滚轮不会损坏电池板的表面。利用接触式清洁设备能够清除硅片、玻璃或EVA薄膜等基材表面的小到1位微米的松动污染颗粒,而不损伤基材表面。随后被清除的污染颗粒转移到粘尘纸卷进一步分析和销毁。在清洁过程后,清洁过的电池板立刻通过静电消除单元去处静电,防止吸引颗粒引起再次污染。

在每个可能出现材料表面污染的工序使用接触式清洁机,可以显著提高生产效益和太阳能电池的功效。接触式清洁已经被证实是最高效的表面除尘、清洁方式。

结论

随着原材料价格的不断提高,太阳能电池生产厂必须要找到适合自己的提高生产效益和减少浪费的方法。污染物对生产效率和太阳能电池本身的效率都有重要的影响。接触式清洁技术为提高生产和电池的效率提供了一个最佳的可选解决方案。


关键字:太阳能电池  污染问题 编辑:冰封 引用地址:太阳能电池生产过程中的污染问题

上一篇:巧妙使用笔记本电池
下一篇:如何延长基站电源蓄电池寿命

推荐阅读最新更新时间:2023-10-18 15:45

多晶硅太阳能电池模块的最高效率达18.2%
  德国肖特 太阳能 (SCHOTT Solar)宣布,该公司的 多晶硅太阳能电池 模块转换效率达到了全球最高的18.2%,并在EU PV SEC上展示了该模块。在2010年的EU PVSEC上,该公司展示了转换效率为17.6%的多晶硅太阳能电池模块,此次将该公司的纪录提高了0.6个百分点。该模块的最大输出 功率 为268W。   肖特太阳能展示的模块使用了60个转换效率达18.7%以上的单元。单元表面的母线电极由2010年的两根增加到了三根,从而减少了电损失。单元背面与2010年一样,继续采用了在硅晶元和背面电极之间形成钝化层以实现局部接触的“PERC”构造。   此外,德国Q-Cells公司展示了转换效率为18.1
[电源管理]
基于交钥匙系统和通用测试仪器的太阳能电池测试解决方案
太阳能产业的成长增加了对太阳能电池(及太阳能模组)测试和测量解决方案的需求,而且随着太阳能电池尺寸的增大和效率的提高,电池测试需要运用更大的电流和更高的功率水平,这就要求采用更加灵活的测试设备。 通常需要测量太阳能电池的几项关键参数。这些参数是: ● VOC——开路电压。在电流等于0时的电池电压。 ● ISC——短路电流。当负载电阻等于0时,从电池流出的电流。 ● Pmax——电池的最大功率输出。电池输出最大功率时的电压值和电流值。I-V曲线(图1)上的Pmax点通常被称为最大功率点(MPP)。 图1 这张太阳能电池的I-V曲线显示了Pmax及其与Imax和Vmax的关系 ● Vmax——在Pmax点,电池的电压值。 ● Ima
[测试测量]
基于交钥匙系统和通用测试仪器的<font color='red'>太阳能电池</font>测试解决方案
AVR单片机用于太阳能电池控制器的设计
简介:在此设计的太阳能控制器性能稳定,具有过充过放保护和温度补偿。经过测试,系统显示出良好的控制效果,不仅提高了太阳电池的工作效率,同时也保护了所使用的蓄电池,在利用绿色能源方面,具有一定的社会效益和广泛的推广价值。 随着能源危机和环境污染的加深,太阳能的研究和利用受到广泛的关注。太阳能是人类取之不尽用之不竭的可再生能源,也是清洁能源,不产生任何的环境污染,在太阳能的有效利用中,太阳能充电是近些年发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。太阳能电池发电是基于“光生伏打效应”原理,将太阳能转化为电能,利用充电效应将太阳辐射直接转化为电能。它具有永久性、清洁性和灵活性大的优点,是其他能源无法比拟的。 1 太阳能控
[单片机]
AVR单片机用于<font color='red'>太阳能电池</font>控制器的设计
高效铜电镀硅基异质结太阳能电池成功研发
第21届国际光伏科学与工程会议于2011年11月28日至12月2日在日本福冈召开。日本钟渊(Kaneka)和比利时微电子研究中心(IMEC)在会中展示了非银浆硅基异质结太阳能电池。Kaneka在IMEC现有铜电镀技术的基础上,通过应用此技术成功研发出高效铜电镀硅基异质结太阳能电池。电镀铜在透明导电氧化层上接触输电网,6英寸硅衬底的光电转换效率超过21%。 当前,银浆丝网印刷技术是实现硅异质结太阳能电池的顶部电网电极的首选。降低银浆丝网印刷电阻和细化金属线仍存在困难,从而也难以实现太阳能电池高效率、低成本的目标。在Kaneka展示的非银浆太阳能电池技术中,电镀铜取代银浆,由此,世界第一例铜电镀硅异质结太阳能电池顶部栅电极形成了。铜
[新能源]
新型旋转太阳能电池锥可提高光电转换效率
任何一种产品都不能脱离经济的规律,要想得到普及,从根本上来说是要不断的降低成本。对于如今还处于寒冬中的光伏企业来说更是如此。光伏发电曾一度十分昂贵,但是在规模经济的带动下,近几年时间里光伏发电成本成直线下降的趋势,如今已经非常接近平价上网的了。这一切都取决于光伏技术的不断创新。 从理论上讲,1平米的阳光照射面最多能产生1000瓦特的能量,如果想要提高现有太阳能板的接收总量就必须将光线聚焦,而这会导致电池板温度过高而烧毁。 对于这个“矛盾”命题,国外一家科技公司给出了完美的解决方案:他们研发的这款太阳能锥由上千块三角太阳能板构成,依靠特别设计的聚光镜与旋转锥体,在获得较之前20倍光线的同时,也将核心转换部件的温度保持在安
[电源管理]
中国自主研发世界首块车顶用太阳能电池
    据报道,位于河北保定“中国?电谷”的英利光伏应用技术研究院今日透露,历经五个多月攻关,该院终于研发成功了世界首块车顶用太阳能 电池 ,此为全球第一块用于汽车车顶的商品化光伏组件,电池具有自主专利技术和自主知识产权。     据英利光伏应用技术研究院院长王士元介绍,光伏技术与汽车技术相结合将成为未来新能源汽车的发展趋势。自今年四月始,该院组织研发此“车顶用双曲面一体化成型异型光伏组件”。经测试,研发成功的电池组件功率为一百八十瓦,车顶安装电池的汽车依靠混合动力时速达到八十至一百二十公里,续航时间三点五个小时。     据了解,安装此种电池的汽车,已在天津汽车技术研究中心通过技术性能测试。电池组件可作为汽车用电
[电源管理]
Zeta光学轮廓仪的太阳能电池量测解决方案
太阳能电池量测解决方案 KLA Instruments Zeta 光学轮廓仪 导言 太阳能电池大多由单晶硅或多晶硅制成,将晶硅锭加工成太阳能电池需要一系列制造工艺,包括晶圆切割、制绒、酸洗、扩散、刻蚀、减反膜沉积、激光开槽、接触印刷等。下图为工艺流程中的测量节点。 太阳能电池工艺流程中的量测节点, 包括金刚石切割线的表面形貌、硅片翘曲/表面粗糙度/边缘倒角、电池片表面金字塔绒面高度和宽度的表征、减反膜厚度和反射率,以及激光开槽、太阳能金属栅线和主栅线的形貌。 本篇应用说明主要介绍采用KLA Instruments的Zeta 3D光学轮廓仪对太阳能电池的表面金字塔结构、激光开槽、金属栅线和主栅线结构的测量与分析。 Zeta光
[测试测量]
Zeta光学轮廓仪的<font color='red'>太阳能电池</font>量测解决方案
中芯国际计划开始制造太阳能电池和电池板
  新浪科技讯 美国东部时间3月27日4:59(北京时间3月27日17:59)消息,中芯国际(Nasdaq: SMI)今天宣布,该公司将于下月开始制造太阳能电池和电池板,所需原料将来自其核心业务产生的再生硅,预计这项业务有望成为公司新的收入来源。   中芯国际发言人雷科-常(Reiko Chang)表示,初期的年生产能力将达10兆瓦,主要的生产原料硅将取自芯片制造业务产生的二手硅和再生硅,太阳能电池制造技术相当一部分 与芯片制造过程中使用的技术类似,“初期的生产能力不会太大。” 太阳能 电池和电池板的售价大约为3美元~4美元/瓦,以此计算,该业务初期的年产值将达3000万美
[焦点新闻]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved