一种基于真随机数发生器的扩展频谱CMOS振荡器的设计

最新更新时间:2011-10-10来源: chinaaet关键字:真随机数发生器  CMOS  振荡器 手机看文章 扫描二维码
随时随地手机看文章

在现代开关电源的控制电路中,振荡器" target="_blank">振荡器

模拟电路和信号处理起着很重要的作用。在多数情况下,其工作频率被设计为某一固定频率或是基于一定负载的恒定值,在该工作频率下存在大量的噪声信号。如果振荡器的频率在某一频率范围内随机变化,噪声信号就会分散在一定的频率范围,从而可以减小由谐振引起的噪声,并有利于在频谱范围内,最大限度地减小开关电源的输出信号噪声峰值。本文提出了一种新型真随机数发生器的结构,利用真随机数发生器产生的随机序列控制振荡器中恒流源的充电电流的大小,设计了一种扩展频谱CMOS振荡器,可以用于改善DC/DC转换器的噪声性能。

1 扩展频谱振荡器的结构

整个电路的基本结构如图1所示,它由随机序列发生器、振荡器电路、整形电路及二分频电路四部分组成。在外部使能信号和反馈时钟的控制下,随机序列发生器产生随机信号,与整形电路的反馈信号一起控制振荡器工作,这样振荡器中对电容充电电流的大小在一定范围内是随机跳变的,因此振荡器产生了随机振荡信号。在振荡器中,通过改变电容的充电电流的大小,从而调节随机振荡器的振荡信号的周期。振荡器产生的振荡信号经过二分频电路整形后产生的时钟频率在某一频率范围内随机变化。
 

2 真随机数发生器电路

2.1 设计思路

在以往的文献]中,真随机数发生器的许多设计方法已经产生。本电路设计的思路是利用D触发器“振荡采样法”,核心部分是一个下降沿触发的D触发器,用于对两个相对独立的方波进行数字混合,即将一个高频方波送触发器时钟端,另一个低频方波送入数据输入端。但文献提出了一种振荡采样法的结构需要两个振荡器,电路复杂,不能满足扩展频谱振荡器的需要。

2.2 电路设计

通过对文献振荡采样法的结构进行改进,本文设计了一种仅需要一个振荡器的随机序列发生器。

当使能信号EN为高电平时,整体电路如图2所示。在此电路中共有17级D触发器,第一个D触发器实现对两个独立的方波进行数字混合,后面16个D触发器构成一个16位的移位寄存器。为了补偿输出分布的不均匀,在采样时钟的节拍下,每次将第一个D触发器采样得到的单个随机位逐次移位,然后将移位寄存器的第二个D触发器的输出与最后的D触发器的输出异或,此信号b12又被送入到第一个D触发器的数据输人端。电路的输出信号为移位寄存器的后四位,即为:c5,c6,c7,a10。
 

在电路设计中,利用了异或电路把相隔14个时钟的输出值b7和a10相异或,这样得到b12的预知输出值的概率很小。其原理是根据高斯分布的特征之一,随机变量(周期)的变化会引起标准变差的相同变化。如果我们考虑相隔14个周期的采样值,而不是连续采样值,这样第14个时钟边缘相对于第一个时钟边缘的标准是原来的14倍。于是相隔多个周期的采样值就会具有较小的相关性,预知输出值的概率就很小。这样,b7和a10相异或得到的b12信号是一预知概率很小的随机信号,所以送入到第一个D触发器的数据输入端的信号为随机信号。

综上所述,在某范围内随机采样时钟的节拍下,第一个D触发器对输入随机数据b12进行采样得到随机信号。为了得到分布均匀的输出信号,将采样所得到的随机信号利用移位寄存器逐次移位,从而得到了分布均匀的四路随机输出信号c5,c6,c7,a10。

3 振荡器电路设计

CMOS随机振荡器电路的工作原理图如图3所示。M1~M5,M7,M8,R1构成了单位增益缓冲器,使,决定了振荡器的充电电流基I1(I1=Vo/R1),在设计时可以调节R1的大小实现对充电电流基I1的调整。M10~M18构成了电压比较器,利用M18,M19电流镜产生单端输出Vout。由M25产生镜像电流I2,对时间常数电容C充电。随机电流充电电路由随机控制信号(V1~V4)随机打开M27~M30管,由于镜像的作用,电容C充电电流变大,加快电容C充电速度,即改变了振荡器的频率。在电路中M21~M24各管的宽长比比值设计为8:4:2:1,使振荡器的振荡频率可以完全覆盖某一频率范围,从而保证该振荡器在某一频率范围内连续随机变化。
 

 

二分频电路,将振荡器输出信号整形,实现方波输出。

由于t放约占(t放+t充)的1%,因此计算时可以忽略t放,在仿真时改变R1的大小,就可以达到预期的目标。

整个电路输出时钟为:
 

4 扩展频谱振荡器整体电路的仿真结果

4.1 真随机数发生器电路的仿真

真随机数发生器电路的仿真如图4所示。c5,c6,c7,a10为串联的D触发器中最后四位的输出信号,从仿真结果中可见,在开始几个微秒内,这四位随机信号没有变化,则输出的时钟信号的周期保持不变;在几个微秒之后,这四位随机信号随机变化,则输出时钟的频率以基频为最小值随机变化。此后,输出时钟信号的周期将随着这四位随机信号的改变而变化。
 

4.2 振荡器整体电路的仿真

通过Cadence spectre仿真工具对电路进行仿真验证,当随机开关都关闭时振荡器的振荡频率为1 MHz;而当随机开关管都打开时振荡器的振荡频率为1.6 MHz。振荡器的输出为随机信号如图5所示。a2是对应于Vout的输出时钟信号。从仿真波形可见,输出时钟信号a2的周期随机变化,验证了所设计的电路的正确性。
 

5 试验情况

将上述电路应用于DC/DC转换器电路,在输出电流为500 mA,输出电容为10 μF的条件下进行整体测试。同时将DC/DC转换器的频率固定,即将振荡器的随机控制信号置为低电平,在输出电流为500 mA,输出电容为22μF的条件进行整体测试。测试结果表明,使用扩展频谱振荡器电路的转换器的输出电容值仅为固定频率转换器的一半,但是峰值大于20 dBm的输出噪声很明显地减少了。由此可见,采用扩展频谱振荡器的转换器抑制噪声的能力比工作频率固定的转换器强。

6 结语

本文利用真随机数发生器产生随机信号控制充电恒流源电流大小,完成了一种扩展频谱振荡器电路的设计。仿真结果表明,在5 V电源电压下,利用随机数发生器产生的控制信号实现了扩展频谱振荡器在1~1.6 MHz的范围频谱内随机变化,随机振荡信号性能良好,能满足实际电路需要。

关键字:真随机数发生器  CMOS  振荡器 编辑:探路者 引用地址:一种基于真随机数发生器的扩展频谱CMOS振荡器的设计

上一篇:高压变频器事故分析与防范措施
下一篇:Vishay Siliconix的SiR662DP 60V N沟道TrenchFET®功率MOSFET荣获Top-10 DC/DC电源产品奖

推荐阅读最新更新时间:2023-10-18 15:52

百亿美金CMOS传感器市场,增势强劲
物联网时代到来的大背景下,CMOS图像传感器是一个极具活力与成长性的半导体细分市场。尤其在汽车、安防、工控等领域,具备较大提升空间,能够接力手机领域,成为后续增长主要动力。预计2018年全球CMOS传感器销售额将达到137亿美元,同比增长10%;2017-2022年出货量CAGR达11.7%。至2022年,CMOS传感器的全球销售额将达到190亿美金。 变“光”为“数”,图像传感器精密而关键 图像传感器是当今应用最普遍、重要性最高的传感器之一。其主要采用感光单元阵列和辅助控制电路获取对象景物的亮度和色彩信号,并通过复杂的信号处理和图像处理技术输出数字化的图像信息。 图像传感器中的感光单元一般采用感光二极管(pho
[传感器]
百亿美金<font color='red'>CMOS</font>传感器市场,增势强劲
索尼公布全世界感光性能最强CMOS传感器
    索尼近日公布了一款全新的CMOS传感器,索尼宣称这款IMX224MQV传感器是现在世界上感光敏感度最强的CMOS。这款新传感器是为了作为车载摄像头的感光元件而开发的,据悉这款产品可以在0.005lux这样低照度的环境下完成色彩采集。传感器本身是一块1/3"的127万像素传感器,以下是传感器的详细信息: 索尼新款IMX224MQV传感器     传感器型号:IMX224MQV     有效像素数:1305 (H) x 977 (V) 127万像素     传感器尺寸:1/3英寸     单像素尺寸:3.75μm (H) x 3.75μm (V)     帧率:全尺寸采集:10bit 120fps,
[家用电子]
关于CMOS高清摄像机的夜视局限问题及与技术突破
2010年以来,经过两年多的市场培育,高清摄像机正从“趋势”变成“现实”。许多高清摄像机厂家如雨后春笋般涌现出来,传统的模拟摄像机厂家也逐步往高清领域转型。在市场上,越来越多的的代理商、工程商和用户认可了高清。可以说,2012年以来,高清摄像机开始迎来发展的高峰期。 具体来看,尽管仍被笼统地称为“百万高清”,但高清摄像机的清晰度已有了很大的提升,像素从60万、130万、200万到500万递增,有的厂家甚至宣称已将像素级别提升至2000万;在传输方式上,IP与HD-SDI均得到了较快发展,并各自占据了不小的市场份额。此外,在色彩还原度和智能分析等方面,高清摄像机也有了很大的改进。 但由于技术不够成熟、成本较高
[安防电子]
CMOS集成电路设计(三):CMOS设计注意事项
(1)使用TTL集成电路注意事项   ①TTL集成电路的电源电压不能高于+5.5V使用,不能将电源与地颠倒错接,否则将会因为过大电流而造成器件损坏。   ②电路的各输入端不能直接与高于+5.5V和低于-0.5V的低内阻电源连接,因为低内阻电源能提供较大的电流,导致器件过热而烧坏。   ③除三态和集电极开路的电路外,输出端不允许并联使用。如果将 图T306双列直插集电极开路的门电路输出端并联使用而使电路具有线与功能时,应在其输出端加一个预先计算好的上拉负载电阻到VCC端。   ④输出端不允许与电源或地短路。否则可能造成器件损坏。但可以通过电阻与地相连,提高输出电平。   ⑤在电源接通时,不要移动或插入集成电
[模拟电子]
<font color='red'>CMOS</font>集成电路设计(三):<font color='red'>CMOS</font>设计注意事项
全硅MEMS振荡器介绍
无论是电子工程师还是元器件采购者,在选择时钟组件时都会经过全面严谨的评估。因为一颗健康、稳定、持久的“心脏”,将直接影响到电子系统的功能和可靠性。 时钟组件可分为无源晶振、有源晶振和多输出时钟发生器三大类产品。在过去60年中,石英作为时钟市场的主流技术,一直占据着霸主地位。但由于其受到传统制造工艺的限制以及下游原材料(起振电路和基座)市场的垄断,因此性价比无法进一步提升。为了满足电子市场对元器件提出的更小、更可靠、更灵活的需求,时钟组件必须走上全面硅化的道路。这篇文章将主要介绍全硅MEMS振荡器和传统石英的区别,以及全硅IC技术所解决的问题。 石英和全硅MEMS时钟振荡器简介 传统的石英振荡器是由压电石英加上简单的起振
[模拟电子]
IDT 推出全球首款USB 3.0控制器用振荡器
新器件扩展了在 USB 市场有数以万计出货量的 CrystalFree™ 振荡器产品系列 拥有模拟和数字领域的优势技术、提供领先的混合信号半导体解决方案的供应商 IDT® 公司 (Integrated Device Technology, Inc.; NASDAQ: IDTI) 宣布,推出全球首个支持苛刻的 5Gbps 超高速控制器应用要求的新器件系列,扩展了IDT 在 CrystalFree CMOS 振荡器产品线的产品组合。 新系列的IDT CMOS 振荡器符合所有的超高速 USB 3.0 规格,包括频率精度和抖动,同时满足这些应用对超低功耗的要求。这些器件还支持低频周期信号(LFPS) 以及在USB3.0暂停模式下的
[模拟电子]
msp430系统时钟详解
  SP430 系列单片机基础时钟主要是由低频晶体振荡器,高频晶体振荡器,数字控振荡器(DCO),锁频环(FLL)及 FLL+等模块构成。由于 430 系列单片机中的型号不同而时钟模块也将有所不同。虽然不同型号的单片机的时基模块有所不同,但这些模块生出来的结果是相同的。在MSP430F13、 14中是有TX2振荡器的, 而MSP430F11X,F11中是用LFXT1CLK来代替XT2CLK时钟信号的。在时钟模块中有3个(对于F13,F14)时信号源(或 2个时钟信号源,对于F11X、F11X1):   1-LFXT1CLK: 低频/高频时钟源。由外接晶体振荡器,而无需外接两个振荡电容器常使用的晶体振荡器是32768HZ。   2-
[单片机]
msp430系统时钟详解
STM32L4 MCU的五种振荡器的使用说明
STM32L4xx系列MCU基于ARM Cortex-M4,具有FPU内核、高度灵活性和高级外设集,实现了首屈一指的超低功耗性能。这些器件非常适合电池供电的产品,所需供电电压可低至1.71V。 与一般MCU只有4路时钟相比,STM32L4xx多提供了一个时钟源,具有多功能的时钟管理,5个时钟源(HSE、LSE、 LSI、HSI、MSI)可通过复位和时钟控制器(RCC)外设来管理。以下做简单介绍。 五个时钟源:HSE、LSE、 LSI、HSI、MSI 通过HSE、LSE两个外部振荡器,应用能获得高精度: ◆ HSE时钟(4至80MHz的高速外部时钟),通常用来馈送PLL,并能产生高达80MHz的CPU时钟频率,以及USB控
[单片机]
STM32L4 MCU的五种<font color='red'>振荡器</font>的使用说明
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved