小功率充电器的设计

最新更新时间:2011-10-11来源: 互联网关键字:小功率  充电器 手机看文章 扫描二维码
随时随地手机看文章

0 引 言

    为了使手机、电动自行车等所使用的充电器实现自动充电的功能,大都采用各种各样的专用IC充电器集成电路和各种采样电路。本文介绍一种既能省去复杂的IC电路及其外围电路,又能够实现自动充电功能的电路。

1 工作原理

    原理图如图1所示,它由如下元件构成:C1,V1~V4,C2组成滤波整流电路,变压器T为高频变压器,V5,R2,C11组成功率开关管V7的保护电路,NF为供给IC电源的绕组。单端输出IC为UC3842,其8脚输出5 V基准电压,2脚为反相输入,1脚为放大器输出,4脚为振荡电容C9,电阻R7输入端,5脚为接地端,3脚为过流保护端,6脚为调宽单脉冲输出端,7脚为电源输入端。R6、C7组成负反馈,IC启动瞬间由R1供给启动电压,电路启动后由NF产生电势经V6,C4,C5整流滤波后供给IC工作电压。R12为过流保护取样电阻,V8,C3组成反激整流滤波输出电路。R13为内负载,V9~V12及R14~R19组成发光管显示电路。V5,V6选用FR107,V8选用FR154,V7选用K792,当V7导通时,整流电压加在变压器T初级绕组Np上的电能变成磁能储存在变压器中,在V7导通结束时,Np绕组中电流达到最大值:Ipmax:Ipmax=(E/Lp)ton式中:E为整流电压;Lp为变压器初级绕组电感;ton为V7导通时间。在V7关闭瞬间,变压器次级绕组放电电流为最大值Ismax,若忽略各种损耗应为:Ismax=nIpmax=n(E/Lp)ton。式中:n为变压器变比,n=Np/Ns,Np,Ns为变压器初、次级绕组匝数。

    高频变压器在V7导通期间初级绕组储存能量与V7关闭期间次级绕组释放能量应相等:n(E/Lp)ton=(Uo/Ls)toff,式中:Ls为变压器次级绕组电感;Uo为输出电压;toff为V7关闭时间。

    因为Lp=n2Ls,则:(E/nLs)ton=(Uo/Ls)toffEton=nUotoffUo=(ton/ntoff)E,上式说明输出电压Uo与ton成正比,与匝比n及toff成反比。

    变压器在导通期间储存的能量WLp为:

    变压器Lp愈大储能愈多。变压器储存的能量能否在toff期间释放完,不仅与变压器的工作频率f有关,而且与次级绕组电感量Ls有关,更与负载的大小有关。

    储能释放时间常数τ和V7关闭时间toff之间的差异形成变换器三种工作状态,下面分开介绍:

    (1)toff=τ这种状态为临界状态。各参数波形如图1所示。

    图2为toff=τ的波形图;图2中ub为Vp的控制电压波形;up为变压器初级Np电势波形;φ为变压器磁通变化波形;uces为V7集电极电压波形;ip,is为初、次级电流波形。

    (2)toff>τ各参数波形如图3所示。

    从图3中可以看出磁通φ复位时V7关闭还持续一段时间,ip呈线性上升,is线性下降。

    变压器储存的能量等于电路输出能量。(1/2)LPIpmax2f=Uo2/RL,Uo2=(1/2)LpIpmax2RLf将Ipmax=(E/Lp)ton代入上式,则式中:RL为电路负载电阻;T=1/f为变压器工作周期。式中E,ton,T,Lp为定值,所以输出电压Uo随负载电阻RL的大小而变化,若忽略整流器件压降,则输出电压最大值应为:Uomax=(1/n)Up=(1/n)EV7承受的反压应为:Ucc=E+ Up=E+nUo。

    (3)toff<τ各参数波形如图4所示。

    从图4中可以看出磁通φ在toff期间不能复位,ip也不是从0开始线性增加,is下降不到0,这种工作状态输出电压Uo应满足如下关系:

    上式说明在Lp较大的情况下,Uo只决定于变压器匝数、导通截止脉宽和电源电压E,而与负载电阻RL无关。

    上述三种工作状态中,第二种工作状态输出电压Uo随负载电阻大小而变化,我们正好利用这个特点,满足充电器的充电特性。从电路中可知,电路的负载电阻RL实际上是被充电电池的等效内阻,当电池电量放空时,等效内阻RL很小,随着充电量增大,其等效内阻升高,而电路输出电压Uo就是充电电压,其变化是随RL增大而升高,所以有如图5所示的充电特性曲线。

    从图5可以看出充电电流是随着RL增大而下降。 io=uo/RL充电电压uo、充电电流io都是随RL而变化,RL的变化曲线是电池的充电特性决定的,所以用单端反激电路作成的充电器其充电电压、电流有很好的跟随性当电池充满后,RL也就大到一定限度,充电电压也就进入饱和状态,充电电流自动进入浮充状态。这样便大大简化了自动充电的控制电路。与相同性能的其他充电器电路相比,成本大大降低,可靠性大大提高。

2 电路设计计算

    (1)高频变压器的设计

    变压器是变换器的主要部件,其设计内容主要是磁芯选定,绕组匝数和导线直径的选定。

    变压器主要参数计算公式:

    输出功率Po=Uoio;输入功率Pi=Po/η;占空比D=ton/T;变压器效率为η=Po/Pi;负载电阻RL=Uo/io。

    变压器输入电流最大值Ipmax=2Uo2/DηEminRL;变压器输入电流有效值Ipeff=Dip;变压器工作频率f的确定:

    f高虽然体积、重量可减小,但V7开关损耗增大,f低则变压器体积变大重量加大,综合考虑,一般选f=50 kHz左右。

    当电池充满后,RL也就大到一定限度,充电电压也就进入饱和状态,充电电流自动进入浮充状态。这样便大大简化了自动充电的控制电路。与相同性能的其他充电器电路相比,成本大大降低,可靠性大大提高。

    (2)磁芯尺寸选取

    因电路为单端反激电路,所以励磁电流是单方向的,变压器磁芯中产生的磁通只沿着磁滞回线在第一象限上下移动,如图6所示。

    按图6中的磁路工作状态,对磁芯尺寸计算公式推导如下:

    式中:104为磁通密度单位换算系数;10-6为导通时间单位换算系数;SC为磁芯截面积,单位为cm。;△B取0.7Bs(饱和磁密),单位为T;ton单位为μs。所选磁芯窗口面积So应能绕下初、次级绕组,所以有如下公式关系:

    式中:Ko为铜线占空系数,一般取Ko=0.2~0.5;Kc为磁芯占空系数,铁氧体取Kc=1;j为导线中电流密度,一般取j=2~3 A/mm2;10-2为导线截面积尺寸单位换算系数。

    变压器设计容量PT=EI,则:

    变压器初、次级功率关系为:

    Ps=ηPTPo=Ps-PD

    式中:Ps为变压器次级输出功率;Pd为输出端二极管等损耗功率。若忽略PD,则:Po=ηPT;SoSC=2Poton/η△BjKoKc(Po单位为cm4)据式计算So,SC,选取磁芯尺寸、规格。

    (3)绕组匝数的计算

    为了满足电路要求,式中E,ton应取最大值,单端反激电路变压器原边绕组兼有电感作用。其电感Lp(单位:μH)所需量由下式计算:Lp=Eton/Ip。

    式中:ton单位为μs。用下式核算Np绕组匝数能否满足电感量要求:Lp''''''''''''''''=(0.4πNp2Sc×10-8)/(Lδ+Lc/μc)式中:μc为磁芯材料有效导磁率;Lc为磁芯磁路平均长度(cm);Lδ为磁芯中空气隙长度(单位为cm)。若Lp≤Lp'''''''''''''''',则加大Np,以达到电感量要求。变压器匝比的选取:若不考虑次级整流压降及变压器内损等因素的影响,则n=Ep/Eo,Ns=nNp/D,同理可计算NF=(Ns/Uo)Up。

    (4)导线直径选取计算

    若取j=2.5 A/mm2则:

    d=0.7

    由此计算出各绕组导线直径d(单位为mm)并选取规格值,验算磁芯窗口面积能否绕下各绕组,若绕不下,则重复上述有关设计计算。

    (5)验算次级绕组放电常数,τs应小于toffτs=Ls/RL=(Lp''''''''''''''''/n2)/RL=Lp''''''''''''''''/(n2RL)toff=T/2,T=1/f,所以toff=1/(2f),toff>τs为验算原则。若不能满足,则重复上面有关计算。

3 各主要元器件的选用

    (1)功率开关管的选用。开关管耐压应大于等于E+nUo,一般取(2.5~4)Emax。开关功率管的电流由下式计算确定:

    (2)电容C2,C3的选定,C2电压应大于1.1×220 V;C3电压根据输出电压而定。

    C2,C3电容量的选用原则是:C2Rp=(4~5)T50;C3RL=(4~5)T。式中:T50为频率为50 Hz时对应的工作周期;

    Rp,C2为放电等效电阻、电容;T为变压器工作频率对应的周期。由此可以推算电容量。新型充电器设计组成如图7所示。

4 电路调试

    (1)变换器工作频率调整:调IC4脚的R7和C9可达到调整工作频率的目的;

    (2)功率开关管导通时间ton的调整:调R3和R5可达到调整ton的目的;

    (3)过流保护工作点的调整:调R12可达到调整过流保护工作点的目的。

5 结 语

    用单端反激变换电路制作全自动充电器是对单端反激变换电路探讨实践的总结。用此电路已经设计制作了100 W以内的全自动充电器30多台,使用效果良好。应用所介绍的技术可省去复杂的控制电路和IC,不仅降低了成本,而且大大提高了可靠性,综合效益显著。

关键字:小功率  充电器 编辑:冰封 引用地址:小功率充电器的设计

上一篇:一种新型独立太阳能发电系统充放电电路拓扑
下一篇:国家半导体大功率长寿命LED照明系统解决方案

推荐阅读最新更新时间:2023-10-18 15:52

日本新款超快速充电器面世 15分钟内可充电80%
日前,日本电产安萨尔多工业系统公司(Nidec ASI)新款超快速充电器(Ultra Fast Charger,UFC)面世,为新一代电动车充电至80%只需15分钟,同时可在最小范围内控制对电网的影响。   Nidec ASI宣称,只需不到15分钟,就能为电动车充入近80%的电量,确保车辆的续航里程数达到500公里(约合310.7英里)。若采用并联方式,可为2辆电动车充电;若采用串联方式,可为3辆电动车充电。该设备的能效高达95%,这主要得益于其紧凑型设计、体积小。此外,该设备还能实现其他扩展服务,可满足电动车市场内各企业的分布需求。 Nidec ASI充电系统可从电网及太阳能等可再生能源处获取电量,可实现双向充电:该
[汽车电子]
将手机充电器改作收音机电源
现在的收音机大多为小体积的便携式或袖珍机型,大多采用两节5号(或7号)电池以“3V”电压供电.出门携带使用时显得特别方便。但如果不论在家或出门时均采用电池供电,则电池的使用费用就比较大,不太经济。而这类收音机上一般均配置有可外接电源供电的插口;只要能配上输出电压为DC3V合适的电源转换器等电源,就能用外接电源方式供电,从而减少电池消耗及开支。 然而,能与收音机性能合适配套的“AC220V/DC3V”型电源转换器,市面上并不易购买。虽有一种“DC3V~12V”小型的是次级带多组抽头的变压器,加上整流滤波的电源转换器,使用之前,要先调至“3V”挡后,再用万用表测其输出插头上的电压值。由于无稳压功能,空载情况下高达6V左右
[电源管理]
通过初级端调节满足充电器能效规范
尽管大多数家电和办公设备都是直接插入墙上的电源插座,由高压交流电(AC)供电,但事实上其所有内部电路都需要低压直流(DC)。因此,电源必须把AC电压转换为低DC电压。根据 Ecos consulting 公司的研究结果表明,现在美国使用的AC/DC 电源大约为30亿个,而全球约100亿个。随着这些电源的日益普及,和其对环境的影响加剧,全球各地都越来越关注电源效率的问题。美国加州能源委员会(California Energy Commission, CEC) 针对外部电源提出了强制性效率标准,而目前世界上采用自愿性规范计划的地区也正在考虑制定强制性标准,以推动电源效率进一步提高。 外部电源中有一半以上是用于便携式电子产品,比如笔记
[电源管理]
通过初级端调节满足<font color='red'>充电器</font>能效规范
进一步看齐苹果:三星确认A系与M系机型不会标配充电器
此前,针对苹果取消充电器附赠的举动,三星海外官网曾承诺,三星Galaxy系列产品依然”要什么有什么“,各方面都会给用户最好的配置。   然而,稍后三星就将这条推文现在删除了,在S21的发布会上正式宣布除了个别国家有法律强制要求之外,未来大部分地区都会取消标配充电器。   现在,三星也向苹果看齐,继S系旗舰之后,三星确认新款A系和M系机型不再标配充电器。   官方表示,出于环保原因,手机包装内不再标配充电器。给出的理由也很直接,因为用户已经有充电器了,自然就不需要多余的充电器了。   对于手机厂商而言,取消了附赠充电器,不仅能够为环保做贡献,减少包装体积,还能进一步降低各项成本,从而提升利润。   但对于消费者来说,自用的充
[手机便携]
新型太阳能充电器的研究与设计
1 引言     目前,在各种光伏电站中,普遍采用太阳电池来收集太阳能并将它储存于蓄电池中以便在需要时再逆变成220V/50Hz交流电供给用户使用。然而,在利用太阳电池对蓄电池充电的过程中,由于太阳电池输出特性的非线性,太阳电池工作点并不是时刻处于最大功率点附近,从而造成太阳电池能量的浪费。本课题所研制的新型太阳能充电器根据太阳电池的工作特性——输出最大功率点处的电压值在不同日照下基本不变,采用恒压跟踪(CVT)方式实现了对太阳电池的最大功率跟踪,有效地提高了太阳电池的工作效率,同时也改善了整个系统的工作性能。 2 系统主电路   系统的主电路如图1所示。      由图1可知,主电路拓扑结构为Bu
[应用]
自动判别小功率三极管管脚管型的电路设计
  本设计采用单片机AT89C2051 作为中心控制单元,设计出了自动判别三极管管脚、类型的电路。该电路能迅速自动识别常见中小功率三极管的管型和管脚,并由相应的指示电路显示出判断结果。电路相对较简单,测试方便、快捷,测试结果准确,造价较低,功能扩展性强,升级方便。   在电子技术 中,三极管是使用极其普遍的一种元器件,三级管的参数与许多电参量的测量方案、测量结果都有十分密切的关系,因此,在电子设计中,三极管的管脚、类型的判断和测量非常重要。测量三极管管脚的方法有多种,其中实验室常用的是利用万用表和三极管各管脚的特点进行测量,但由于三极管各个引脚间的电压、电流关系复杂,且三极管本身体积较小,给测量带来很大不便,而目前市场上还没
[单片机]
自动判别<font color='red'>小功率</font>三极管管脚管型的电路设计
Maxim推出开关模式DC-DC充电器
      Maxim推出开关模式DC-DC充电器MAX8900A/MAX8900B,器件提供符合JEITA标准的电池温度监测,支持单节锂离子(Li+)或锂聚合物(Li-Poly)电池的安全充电。该系列器件是业内最先集成±20V过压保护的充电器,无需外部开关即可实现更为安全、可靠的充电过程。       MAX8900A/MAX8900B工作在3.25MHz较高的开关频率,允许使用小尺寸外部元件。器件能够从3.4V至6.3V (MAX8900A)或3.4V至8.7V (MAX8900B)电源产生高达1.2A的电流为电池充电,且发热较低。较低的发热特性和较小的方案尺寸使器件理想用于智能手机、Bluetooth®耳机、便携式
[电源管理]
Maxim推出开关模式DC-DC<font color='red'>充电器</font>
基于STDES-2KW5CH48V-适用于工业轻型电动汽车的2.5 kW - 48 V电池充电器参考设计
介绍 STDES-2KW5CH48V 参考设计主要为工业轻型电动汽车 (LEV) 提供充电解决方案,例如电动自行车、电动人力车、叉车、微型电动车。也适用于工业物流机器人。 充电器实施两种充电配置文件:一种用于锂离子电池,另一种用于铅酸电池,它们适用于电池充电的最新趋势。 充电器设计基于升压功率因数校正 (PFC) 电路,由提供高 PF 的 L4984D 控制大于 0.9,然后是基于全桥 LLC 谐振功率转换器的 DC-DC 电路,由 L6599A 控制。对于输出整流,已选择二极管与使用中心抽头的 LLC 变压器次级绕组配置。该设计采用 STM32F072CB 微控制器来控制功率级和电池充电曲线,并管理保护和用户界面。PFC
[嵌入式]
基于STDES-2KW5CH48V-适用于工业轻型电动汽车的2.5 kW - 48 V电池<font color='red'>充电器</font>参考设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved