如何使太阳能光伏产品更智能、更高效

最新更新时间:2011-10-12来源: 互联网关键字:太阳能  光伏产品 手机看文章 扫描二维码
随时随地手机看文章
太阳能光伏产品的中心议题:

  * 将太阳能从新兴能源转变为主流能源面临的机遇和挑战

  * 整个系统的最终效率比光伏电池的转换效率更重要

  * 决定光伏电池的转换效率的变量

  太阳能光伏产品的解决方案

  * 恩智浦“Delta转换器”通过能量交换原理将相邻面板之间的电压差进行平均分配

  * 与太阳能系统架构有关的三项工艺

  太阳照射地球每6个小时产生的能量就足以满足全球整整一年的能源需求。凭借这笔免费的巨额绿色财富,光伏(PV)技术毅然成为了环保运动的象征。然而,光伏/太阳能这种未来能源虽已问世三十余载,其产量却不到世界能源产量的0.5%。

  

  将太阳能从新兴能源转变为主流能源面临着多方面的机遇和挑战。尽管来自太阳光照的能量巨大无比,但限于设备转换费用昂贵以及转换效率仍有待提高等原因,使太阳能光伏成为免费商品的路还很漫长,而利用半导体来管理转换系统则能够很容易地解决这个问题。目前,光伏能的发展在很大程度上取决于激励机制、政策主张和“小额贷款”的资本投资模式。然而,太阳能光伏总有一天会与化石燃料在价格上持平,这一点毫无疑问。从系统角度来看,大规模部署太阳能装置会改变能源配送的模式,因为这将会涉及诸多因素,如电网运行、负载处理以及其他实际问题。这意味着光伏能的推广应用正处于或已经接近它的转折点,而半导体技术的最新发展恰恰具有推动这种转变的潜力。

  当今最先进的太阳能发电系统是由一套相对简单的元组件构成。当一切如期运行时,其转换效率约为10-15%。一系列广泛的数字及高性能混合信号(HPMS)半导体技术正在构成全新的系统架构。这些新架构在设计上得到了优化以调节环境变化所造成的效率下降,同时通过监测和纠正各元组件的运行特点来优化系统的功率。

  安装能够向电网传递更多功率的太阳能系统极为重要。原因有二:首先,生成但不传递到电网的太阳能光伏并不会带来消费利益;其次,通过提高运行效率每节省一千瓦时(kWh)的能量,就相当于减少向大气层释放新安装的太阳能面板每kWh产生的二氧化碳排放量。

  

  恩智浦半导体一直通过开发软件和硬件技术致力于提高能源转换效率。此外,恩智浦还在继续研究用于应对太阳能面板所经历环境变化的运算法则,以及光伏模块本身的特质。

  恩智浦还供应各种超低功耗的微控制器、驱动器、MOSFET以及其它元件,以满足太阳能技术发展的需求,而较竞争技术,太阳能技术可提供更高的性能和效率。

  能源流失1:环境影响

  通常,人们非常关注光伏电池在能源转换能力上的提升,这主要是因为一个典型的商用光伏电池的效率仍然有限,仅为10-20%(取决于电池技术)。然而,整个系统的最终效率更为重要,而它会受到诸多常见因素的影响,如阴影在面板上的不均匀分布,或是树叶、灰尘或鸟粪等外物落在面板上。

  在当今的大部分系统架构中,串联的太阳能面板构成了系统的基本能量采集部分,每块面板产生约30伏的额定直流电压。由于面板处于串联状态,它们的电压会加总起来。一个典型的配置可能有10块面板,每块产生30伏电压,因此总电压为300伏左右。在某些系统中,这个电压被存储到电池里并经过逆变器转换成交流电或直接作为直流电使用。在绝大多数的住宅和太阳能农场配置中均忽略使用电池,而是经逆变器输出交流电并直接连到电网。

  这里存在一个关键性的假设,既所有面板均以同样的效率运作。然而事实并非如此。首先,生产上的差异会导致面板内的光伏电池在电流产量上略有不同。更重要的是阴影和污垢等环境因素。部分变脏、有阴影的面板或失效的光伏电池都无法采集尽可能多的光照,因此产生的能量较少、电流较低。电池/面板之间的差异导致系统的输出功率显著减少。如果一块面板有10%的面积受阴影遮蔽,那么整块面板的输出功率将减少30%以上。

  能源流失2:信息不足

  光伏电池的转换效率取决于一系列变量,其中包括光照强度、电池的温度、工作点以及电池的理论峰值效率。只要了解这些变量,就可以确定整个太阳能面板的最佳工作点。我们可用传感器、微控制器和其他集成电路来监测和调节工作电压——最容易受系统设计师控制的变量,并在一定的条件下获得大于10-15%的能量增益。这只是信息与通信技术如何提高光伏发电效率的其中一个范例。此外,它还可以添加额外功能,如提高安全水平、简化安装、使维护更轻松便捷等。

  光伏发电行业方兴未已,最具成本效益和节能高效的太阳能系统架构尚未成型。分布式电源管理系统似乎已为业界所认可。然而,一个首要问题是,究竟是让能源以直流电压的形式在系统中传输,还是采用微型变流技术将每块面板的输出从直流电转换成交流电,两者孰优?无论系统架构如何竞争,恩智浦都已蓄势待发,准备引领潮流。

  在这两种提高光伏发电效率的独特方法中,优化设计和提高半导体性能尤为重要,而恩智浦在这些方面都已做出了重大贡献。公司最近推出了MPT612,一种专门执行最大功率点跟踪(MPPT)功能的低功耗集成电路,能够优化太阳能应用的电力提取效率。以电池充电为例,当MPT612在运行恩智浦即将获得专利的MPPT算法时,它从一块太阳能面板提取的能量比传统的控制器要高出30%以上。

 以设计和性能取胜

  在设计领域,恩智浦用于面板的直流/直流转换器是一项重大创新。恩智浦“Delta转换器”均衡了太阳能面板之间的电压差。市场上的其他解决方案是处理光伏面板产生的所有功率,而恩智浦Delta转换器是通过能量交换原理将相邻面板之间的电压差进行平均分配。当不存在电压差异时,转换器处于非活动状态。这种产品的优点包括转换过程中耗能较低,以及由于转换器不会持续工作而具有更高的可靠性。

  恩智浦凭借其在高可靠性电子产品和高电压半导体领域的多年经验,已经开发并且正在开发一系列具有推动太阳能行业发展潜力的半导体产品:

  执行最大功率点跟踪的微控制器;

  用于面板间通信的无线和电力线通信芯片;

  直流/交流转换器的高压驱动器,直流/直流转换器的低压驱动器;

  控制器、功率MOSFETs以及用于直流/直流和直流/交流转换器的高压和低压驱动器;

  创新的通道功能二极管;

  氮化镓MOSFETs,可执行高频转换且传导和切换损耗非常有限,因此比传统的基于IGBT的电源解决方案更省电;

  这些创新产品是恩智浦几十年来致力于开发高性能混合信号技术的结晶。总而言之,高性能混合信号结合了模拟和数字技术,为设计工程师们开发未来十年内占主导地位的产品带来了多重选择。

  深入实质

  半导体工艺技术使得设计高性能混合信号芯片成为可能。恩智浦有三项工艺与太阳能系统架构有关:EZ-HV工艺,生产可在700伏电压下运行的小型设备;ABCD9和CO50PMU工艺,为电流转换应用领域制定了高达120伏的新性能基准,并将推出卓越的直流/直流转换器;以及之前提到的氮化镓工艺,可生产传导和切换损耗极低的功率MOSFET。

  通过整合由高性能混合信号(HPMS)设计及工艺技术开发出的芯片和设备,将大幅提高太阳能面板的效率,缩短经济盈亏平衡时间,而太阳能光伏也将作为住宅和工业应用中常见的替代能源被广为接受。

关键字:太阳能  光伏产品 编辑:冰封 引用地址:如何使太阳能光伏产品更智能、更高效

上一篇:导弹综合测试系统的程控电源设计
下一篇:高功率因数低空载损耗AC/DC电源的研究

推荐阅读最新更新时间:2023-10-18 15:52

Q3太阳能电池现货报价上扬,厂商大者恒大
  据集邦科技(TRENDFORCE)旗下研究部门EnergyTrend估计,受到需求畅旺与晶圆产能不足的影响,太阳能(Solar)电池现货市场报价持续上扬,由于市场需求热度仍然偏高,使太阳能电池的现货市场报价持续上扬,目前现货市场上的价格已到每瓦1.43美元,估计第三季季增率2.87%。      以季平均价格来看,第二季的平均价位为每瓦1.39美元,相较于首季每瓦1.3美元的价位,季增幅达到7.2%。而对于第三季的价格走势,估计平均价位约为每瓦1.43美元,季增率2.87%。      除了太阳能电池价格持续上扬外,EnergyTrend也表示,晶圆与多晶硅的现货市场价格也开始同步上涨,由于晶圆的产能不足,使得现货市场的报价已
[半导体设计/制造]
用电子技术最大化太阳能电池板输出功率
太阳能 离普通消费者的距离越来越近了,除了太阳能热水器,现在太阳能景观灯、太阳能屋顶、太阳能手机、太阳能路灯等应用也一个个走进我们的视野。但因 太阳能电池 低转换能效引起的高成本问题仍困扰著这一产业的发展。那么,除了材料技术以外,还有什么技术可用来提高太阳能电池板的转换能效呢?答案是有的。本文就将告诉你如何用充电稳压器来实现这一目标。 最初, TI 的线性充电稳压器bqTINY-III 系列只是设计用于通过一个 AC 适配器或 USB 端口为单体锂离子电池充电,然而,这些 IC 也非常适用于由太阳能板供电的应用。 太阳能电池通常是由 p-n 结组成的,p-n 结中入射光线能量(光子)通过导致电子和空穴的重新
[电源管理]
用电子技术最大化<font color='red'>太阳能</font>电池板输出功率
太阳能工程热水器控制器的设计与实现
摘要:设计了一套全自动太阳能工程热水器控制器。该系统利用低功耗高性能的RISC单片机AVR作为控制电路的核心实时监测水温及水位,可实现温度、水位检测管理,故障及相关报警提示等功能,利用E2PROM对设置的参数保存,具有断电记忆功能,断电后,参数无须重新设置。该款全自动太阳能热水器控制器具有使用方便、稳定性高、节能等特点,实用性高。 关键词:工程热水器;控制器;AVR;控制电路 0 引言 随着人们生活水平的提高,各种热水器的使用已相当普及,与之相配套的控制仪也相继问世。然而,目前市场上的各种热水器控制电路还与理想要求相差甚远。消费者需要真正的“全自动”控制,以实现使用的最简单化,就像家用电视机、电冰箱一样,接通电源、
[工业控制]
<font color='red'>太阳能</font>工程热水器控制器的设计与实现
澳大利亚:研究人员创造了新的太阳能制氢效率记录
澳大利亚国立大学(ANU)的研究人员创造了一个新的效率记录,这种电池可以简单地利用阳光将水直接转化为氢。 ANU研究中概述的独特方法还使用了廉价的半导体材料,并使太阳能转化为氢气的效率达到了17.6%。 这已接近安装在屋顶上的太阳能电池板的效率,后者的效率约为20%。 第一作者Siva Karuturi博士说,氢在解决可再生能源间歇性问题上扮演着重要的角色。 “这种太阳能制氢的方法有显著的成本效益,因为它不需要额外的基础设施,而不像使用电解槽来制氢。” 以前的水转化为氢的方法总体转换效率很低,但是Karuturi的研究已经改进了这一点。 “在过去,为了生产氢,太阳能
[新能源]
太阳能光伏发电系统解决方案
一、特点: 太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。 二、系统的组成: ◆ 电源系统:太阳能电池组件和蓄电池。 ◆ 控制保护系统:控制器和逆变器。 ◆ 系统终端(负载):用户的用电设备。 三、太阳能发电原理: ◆ 太阳能电源系统 太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。
[电源管理]
基于AVR单片机的太阳能光伏直流控制器应用设计
0 前言 当今世界能源短缺以及环境污染问题日益严重,这些问题迫使人们寻找和使用新的代替能源。随着电子技术、太阳能电池板生产技术的提高,使得太阳能的利用越来越普遍。太阳能具有无地域限制的特点,而我国很多地方仍然处于缺电状态,特别是一些边远地区、旅游景区,由于非常分散,依靠电网供电难度大、成本高,因而选择太阳能供电十分必要,而在太阳能发电系统中,控制器是十分关键的部件之一。 目前市面上一些太阳能控制器提高效率的手段仅仅局限在单一物理量算法研究(比如只对电压、电流的跟踪),效率的提高是很有限的。我们经过多次实际考察与测量,发现发电效率较高的产品往往价格昂贵,且适应性差,一般都用于固定场合,如大型太阳能发电站等;一些低价的控制
[单片机]
基于AVR单片机的<font color='red'>太阳能</font><font color='red'>光伏</font>直流控制器应用设计
纳米线技术突破为高效太阳能电池组件带来新曙光
   先进光伏 材料公司Sol Voltaics采用其专利工艺Aerotaxy®完成了光伏(PV)纳米线的制造,这是该公司将众所期待的太阳能转换效率提升技术进行商业化过程中的一次重大飞跃。这一突破为Sol Voltaics将SolFilm™光伏解决方案推向市场铺平了道路,可以极低成本将太阳能组件功率提升高达50%。下面就随网络通信小编一起来了解一下相关内容吧。   Sol Voltaics首席执行官Erik Smith表示:“今天的成就对Sol Voltaics来说是迄今为止最重要的。运用Aerotaxy技术生产太阳能纳米线是制造SolFilm的关键。纳米线生长中导线的顶部和底部具有相反的掺杂分布,这使得每根纳米线都是一个全功能
[网络通信]
阿特斯太阳能获得美国光伏标准测试认证
    阿特斯阳光电力日前宣布其五个系列的太阳能组件,CS6P-220P,225P,230P,CS5P-240M 和 CS5A-180M,均名列上月美国加利福尼亚州 (PVUSA) 最高效率组件 PTC 测试排行榜。PTC 测试已快速成为大众普遍接受的测量实际环境中,太阳能组件功率和能效的标准。     阿特斯阳光电力集团董事长兼总裁瞿晓铧博士指出:“我深为我们太阳能组件能蝉联最高 PTC 等级排行榜而自豪。我们自2001年成立至今,一直把质量放在首位。为确保高品质和客户的利益,我们给客户提供的所有组件都是在我们自己的生产基地制造。这次 PTC 排名再次向我们的合作伙伴和客户证实了我们拥有市场上最高质的组件。”     P
[半导体设计/制造]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved