一种改进的基于扫描的电路设计

最新更新时间:2011-10-27来源: 互联网关键字:改进  扫描  电路设计 手机看文章 扫描二维码
随时随地手机看文章

引言

  近年来,随着科学技术的不断发展。单一芯片中所含的晶体管数目越来越多,其电路也越来越复杂。

  为了确保芯片在制作完成后的正确性,有关电路测试的这个问题越来越受重视。而且其测试的难度及成本也越来越高,于是如何有效地检验电路的正确性,并大幅度地降低测试成本,成为我们现在研究的热点。通常我们在设计芯片的同时,可以根据芯片本身的特征,额外地把可测性电路设计(Design For TESTability)在芯片里。谈到可测性的电路设计,内建自测试(BIST)和基于扫描Scan—Based)的电路设计是常被提及的。

  基于扫描的电路设计是可测性设计中最常用的一种方法。它是属于TEST—Per—Scan测试方法的电路。

  目前的测试方法有两种,一种是TEST—Per—Scan,另一种是TEST—Per—Clock,这两种测试方法各有各的优缺点。所谓TEST—Per—Scan的运作方式,就是我们将一个电路里的全部或部分寄存器串联起来,形成一条扫描链,然后将测试序列在每个周期移入一个值,直到测试向量填满整个扫描路径为止,再经过一个周期后,我们将待测电路的测试结果传到扫描链里。最后移出做压缩分析。这种方法的优点是很容易运用在任何商业性的设计流程中,而且其硬件架构对系统功能的影响较小,控制硬件设计也较为简单:缺点是要*较多的时间来产生测试向量,测试速度慢。所谓TEST—Per一Clock,就是当我们在测试电路的时候,每一个周期都送进一个新的测试向量进入电路,同时在电路的输出得到测试的结果,所以这种方式的电路测试时间较短,速度较快。

  基于扫描的电路设计,主要是将待测电路内的寄存器,全部或部分用扫描寄存器来代替,让我们在对电路进行测试的时候可以轻易地控制其输入及输出,扫描寄存器最常用的结构是多路扫描寄存器,它是在普通寄存器的输入端口加上一个多路器, 如图1所示。测试控制端即多路器的选择端,数据输入端为正常的功能输入端。此外还有测试输入端、时钟输入端和数据输出端。当测试输入端为“0”时,寄存器为正常的功能输入,电路处于正常模式;当测试输入端为“1”时,寄存器为扫描输入。电路就转换成扫描模式。很明显。基于扫描的电路设计可以增加待测电路的可控制性和可观察性。这种设计方式。优点是需要额外的硬件空间较少,而且测试的效果较好,缺点是测试时间太长。造成测试时间长的原因有多个方面,我们可以通过分析基于扫描的电路设计来得到。这个缺点,正是我们想要改进的部分。


 


  2 基于扫描的电路的基本单元

  2.1 线性反馈移位寄存器(LFSR)

  最简单的测试向量产生器就是由线性反馈移位寄存器(Linear Feedback Shift Registers,LFSR)来组成的。因为当时钟信号改变时,线性反馈移位寄存器内D触发器的值就会改变,此时我们就可以将这些会一直改变的值当成测试向量,送给电路做测试。

  一般的线性反馈移位寄存器可以分为两类,分别是Extemal XOR线性反馈移位寄存器和Internal XOR线性反馈移位寄存器,如图2所示。这两种线性反馈移位寄存器的主要差别在于External XOR线性反馈移位寄存器的modulo一2加法器是放在电路的反馈路径上。而Internal XOR的线性反馈移位寄存器的加法器则是放在两个寄存器之问。这两种不同结构的线性反馈移位寄存器所产生出的测试向量也不一样,ExternalXOR线性反馈移位寄存器所产生的测试向量有下列特性:每个向量与下个向量之问的关系,是向量中的位分别往右移了一位。而Internal XOR的线性反馈移位寄存器由于modulo一2加法器是在寄存器之问,所以产生的测试向量看起来比External XOR线性反馈移位寄存器有更随机的特性,所以我们必须选择InternalXOR LFSR作为测试向量产生器。

 2.2 多输入特征寄存器(MISR)

  多输入特征寄存器(Multiple Input Signature Reg—ister,MISR)是线性反馈移位寄存器的一种。如图3所示,将待测电路的输出部分加入线性反馈移位寄存器里,就成为一个多输入特征寄存器。

  多输入特征寄存器最主要的特性是它的状态。即其寄存器的值,不仅与现在的状态有关,还与当时的输入值有关,可以表示为:Next state=MISR(Cur—renLstate,Input),而其中MISR(……)可以代表特征式不同的多输入特征寄存器。


 


  3 基于扫描的测试架构的改进

  为了减少基于扫描的电路设计的测试时间,就必须深入了解它的电路设计,了解为何其会消耗那么多的测试时间,然后来改进测试架构。

  3.1 用向量压缩来减少测试时间

  在测试过程中,我们有时可以发现,我们将要传入扫描链的测试向量,已经部分地包含在已经传入的测试向量序列中了,如图4所示。V1向量的后半部分刚好等于V2向量的前半部分“1010”,如果在传输向量的时候,先传输V1再传输V2,那么我们就只需要将V2的后半段向量信息传入扫描链就可以让V2原本的信息在扫描链中完整地呈现,如图中V3所示。很明显,我们原来要输入的测试向量的长度为16位,压缩后只有12位,节省了V2的前半部分传入扫描链的时间,从而减少了测试的时间,而且测试信息也没有减少,不会影响故障覆盖率。


 


  3.2 用TEST—Per-Clock来缩短测试时间

  我们对造成测试时间不够理想的原因进行分析:

  传统的基于扫描的测试电路是采取TEST—Per—Scan的方式来进行测试的,也就是说要先将测试向量扫描到电路内的由扫描寄存器所组成的扫描链内。然后才可以完成一次测试;将测试向量扫描到待测电路这个步骤是一位一位地进行的,所以如果一个电路需要长度较大的测试的向量时,那么在这整个测试过程里。将会花很多的时间在将测试向量输入到扫描链的这个步骤上,从而增加了测试时间。这个结构的测试向量的产生是利用LFSR产生出的伪随机向量,并将其送入电路做测试。用LFSR产生测试向量会产生出许多没有作用的测试向量,而这些没有作用的测试向量又会产生大量多余的时间将其送入扫描链中,造成测试时间更严重的浪费。如果采用TEST—Per—Clock的方式做测试,在扫描链里原本的测试向量,在用一个时钟的时间移进来一位之后,扫描链所含的值即是测试向量,对待测电路而言,其实都是一个新的测试向量,而且也具有伪随机向量的特性,如果此测试向量是有效的,我们的测试时间就只用了一个时钟的时间,而如果此测试向量无效,原本测试到没有作用的测试向量时所需的付出的时间代价,由于用了新的测试向量填满整个扫描链所需的时间,减少到只需一个时钟移进一位的时间。

  如图5所示,每个时钟周期。Slot会往左移动一位,即在Slot内产生一个新的测试向量,而Slot大小可以看成扫描链的大小。


 


  不过,由于每个时钟都要作测试,所以每个时钟在测试后都会产生新的测试结果。传统的基于扫描的测试环境里,电路输出结果传送出来的同时也将新的测试传进扫描链里。

  如果输出的向量只有一位就不会有这样的问题。

  因为我们现在要产生一个新的测试向量所需要的时间只有一个时钟周期,所以时问刚刚好。但是一般而言,待测电路的输出向量都会超过一位。所以我们在观察电路输出结果这个步骤上就会有问题。为了解决这个问题,需要对传统的基于扫描的测试电路做些修改。在待测电路的输出部分,可以用MISR来取代原来的扫描链电路,也就是将输出送到MISR做特征分析,如图6所示。


 


  但是由于电路越来越复杂,电路的主要输入与输出的个数就会很多,如果对这样的待测电路加测试电路,将会出现外加电路面积过大的问题。所以我们针对MISR的部分提出一个方法,使得因测试而增加得MISR可以尽量地缩小。

  缩小MISR的大小最直接的想法是将主要输出经组合电路压缩变小,但是这样会使错误覆盖率降低,使测试向量变多,这些问题在文献中谈到了。造成错误覆盖率降低的原因是如果我们将有共同输入向量的两个主要输出通过组合电路合并的话。将可能会造成原本可以测试到的错误,在合并后就测试不到了,所以造成了错误覆盖率的降低。

  为了避免这个情况的发生,我们在向量压缩的过程中。只有将没有共同输入向量的主要输出合并在一起,就不会有问题出现了。如图6所示,两个不同的待测电路的主要输出经过合并以后输出到MISR,这样用一个与门代替了一个寄存器以便减少面积,而错误覆盖率则因为两两合并的主要输出端都没有相同的主要输出资料,所以就没有错误覆盖率降低的问题存在,即原来可以被侦测到的错误,在经过主要输出端合并之后仍然可以被侦测到。

  4 结论

  经过改进后的基于扫描的测试架构,用向量压缩来减少测试时间,并且将TEST—Per-Scan的测试方式改成了TEST—Per-Clock的测试方式,加快了测试的速度。


关键字:改进  扫描  电路设计 编辑:冰封 引用地址:一种改进的基于扫描的电路设计

上一篇:一种基于PVDF的双发电系统的设计
下一篇:基于优化神经网络的三相全控整流电路故障诊断

推荐阅读最新更新时间:2023-10-18 15:58

基于GPRS的无线心电监护系统电路设计
  提出了一种基于GPRS标准的新型心电图仪系统。该系统由监护终端(便携式心电监护仪)、无线网络和监护中心站三部分组成。其中无线网络利用现代的通信网络和计算机网络,在监护终端提供接入装置就行;监护中心一般建在医院日的监护中心,心电监护是该中心的一个部分;监护终端是实现无线实时监控的关键。    心电监护终端硬件   整个心电监护终端电路主要包括:①心电信号采集处理电路,该部分包括前置放大电路、滤波电路和后极放大电路;②心电监护电路,QRS波提取的检波电路、MCU和液晶显示;③远程通信部分,包括MCU、GSM/GPRS模块、SIM卡和射频电路;④电源电路。心电信号由后极放大电路出来后分为两路,一路径带通滤波和检波电路进入MCU,实
[电源管理]
基于GPRS的无线心电监护系统<font color='red'>电路设计</font>
日立为商用车推自动驻车制动器 提高安全性改进自动驾驶功能
据外媒报道,日本 日立 汽车系统公司推出了一款新型重型自动驻车制动器(APB HD),专为皮卡、货车、SUV和轻型商用车设计。 (图片来源: 日立 汽车系统) 该款新型制动系统由日立欧洲制动事业部研发,已经在北美和欧洲投产。今年9月,日立汽车系统公司的几家客户为欧洲市场新车配备了该系统,而在10月为北美市场新车配备了该系统。至于亚太地区,该制动系统将于2021年投产。 自动驻车制动器的份额占全球制动器市场的25%以上,而且其受欢迎程度还在持续增长。据日立汽车系统公司对市场的分析,由于去年收购了Chassis Brakes International(泛博制动公司),目前其是全球第三大自动驻车制动系统供应商。 该款
[汽车电子]
日立为商用车推自动驻车制动器 提高安全性<font color='red'>改进</font>自动驾驶功能
基于无线传感网络的瓦斯浓度采集前端电路设计
   瓦斯浓度采集前端 :在研究综合型应用平台,主要避免因瓦斯浓度过高带来的灾害,因此瓦斯监测的准确性十分重要,故而选择合适的瓦斯采集传感器尤为重要。从多方面考虑后,瓦斯浓度采集模块选用中国船舶重工集团公司第七一八研究所最新研制的MJC4/3.0L载体催化元件,以下是用于煤矿系统中瓦斯浓度采集的传感器电路设计。瓦斯传感器硬件接口示意图如图2所示。      图2 瓦斯传感器的硬件接口示意图   瓦斯传感器采用热催化式瓦斯传感器,内部含有载体催化元件。若探头气室内无瓦斯气体,电桥保持平衡,此时没有信号输出。反之,则失去平衡,输出一个电信号,该信号与瓦斯气体浓度成正比。由于监测信号的值比较小,只有mV级大小,所以要经仪表放大器AD62
[电源管理]
基于无线传感网络的瓦斯浓度采集前端<font color='red'>电路设计</font>
分享基于89C51的摄像镜头控制电路设计
视频监控作为一种远程监测、监控手段,以其信息的丰富性和结果的直观性受到诸多行业的青睐,被广泛应用于自动控制、产品检测、安全监控、信息采集等领域。 1 概述 视频监控作为一种远程监测、监控手段,以其信息的丰富性和结果的直观性受到诸多行业的青睐,被广泛应用于自动控制、产品检测、安全监控、信息采集等领域。其基本工作原理是通过摄像机采集被监视对象的图像信息,并传送到相应的终端设备和控制设备,实现监控功能。在这些系统中,摄像机拍摄的图像质量往往是系统应用效果的决定性因素,因此必须根据拍摄现场的条件对摄像机进行适当的控制。 目前,监控系统中采用的摄像机从结构上主要分为两类,一类是具有内置镜头的一体化摄像机,
[工业控制]
分享基于89C51的摄像镜头控制<font color='red'>电路设计</font>
改进遗传算法的支持向量机特征选择解决方案
  支持向量机是一种在统计学习理论的基础上发展而来的机器学习方法 ,通过学习类别之间分界面附近的精确信息,可以自动寻找那些对分类有较好区分能力的支持向量,由此构造出的分类器可以使类与类之间的间隔最大化,因而有较好的泛化性能和较高的分类准确率。由于支持向量机具有小样本、非线性、高维数、避免局部最小点以及过学习现象等优点,所以被广泛运用于故障诊断、图像识别、回归预测等领域。但是如果缺少了对样本进行有效地特征选择,支持向量机在分类时往往会出现训练时间过长以及较低的分类准确率,这恰恰是由于支持向量机无法利用混乱的样本分类信息而引起的,因此特征选择是分类问题中的一个重要环节。特征选择的任务是从原始的特征集合中去除对分类无用的冗余特征以及那些
[嵌入式]
新型同步升降压LED驱动电路设计方案
  LED需要一种有效的驱动电路。这类驱动器IC必须提供准确的直流电流源,而且无论输入电源的变化范围有多宽,都要提供严格控制的LED电压调节。汽车电池总线中见到的极端电压范围为冷发动/启停情况下的4.7V至负载突降情况下的60V。但更常见的是,电池总线电压在通常情况下工作在9V~16V。因为很多这类新型LED前灯应用使用4至8个串联HB LED,且电压降为12V~25V,而电池总线电压范围可能为4.7V~60V,所以需要升降压拓扑给LED供电,其原因是输入电压可能高于、低于或等于所需的 LED串电压。其次,LED驱动器必须提供一种调光方法,并提供多种保护功能,以防遭遇LED开路或短路问题。除了可在电气环境十分严苛的汽车电源总线可靠
[电源管理]
解析三相PWM逆变器的主电源电路设计
随着电力电子技术的发展, 逆变器的应用已深入到各个领域, 一般均要求逆变器具有高质量的输出波形。逆变器输出波形质量主要包括两个方面, 即稳态精度和动态性能。因此, 研究既具有结构和控制简单, 又具有优良动、静态性能的逆变器控制方案, 一直是电力电子领域研究的热点问题。   随着国民经济的高速发展和国内外能源供应的紧张, 电能的开发和利用显得更为重要。目前, 国内外都在大力开发新能源, 如太阳能发电、风力发电、潮汐发电等。一般情况下, 这些新型发电装置输出不稳定的直流电, 不能直接提供给需要交流电的用户使用。为此, 需要将直流电变换成交流电, 需要时可并入市电电网。这种DC- AC 变换需要逆变技术来完成。因此, 逆变技术在新
[模拟电子]
解析三相PWM逆变器的主电源<font color='red'>电路设计</font>
汽车EPS模块抛负载保护电路设计方案
电动助力转向系统,Electric Power Steering,缩写EPS,是一种直接依靠 电机 提供辅助扭矩的动力转向系统,主要由扭矩 传感器 、车速传感器、电动机、减速机构和 电子 控制单元(ECU)等组成。EPS 控制器 通过采集各个传感器的测量值,得到驾驶员施加在转向盘上的转向力矩、转向盘转角和车速 信号 ;根据EPS控制策略,计算出目标助力力矩并转化为电机的 电流 指令,控制电机产生相应的助力力矩;该助力矩经过减速机构放大后,作用在 机械 转向器上,辅助驾驶员克服转向阻力矩,实现车辆的转向。 汽车EPS包含一个集成的位置控制模块,用来接收一个外部系统(泊车模块)的角度请求以实现控制EPS系统自动转向的功能。外部交
[汽车电子]
汽车EPS模块抛负载保护<font color='red'>电路设计</font>方案
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved