无线充电系统设计原理与实作讲析

最新更新时间:2011-10-30来源: 互联网关键字:无线充电系统  设计原理 手机看文章 扫描二维码
随时随地手机看文章

 引言

  无线充电技术经过了数年的推广与演进后,到如今终于开始受到人们的关注。无线充电是指具有电池的装置透过无线感应的方式取得电力而进行充电,正是因为其方便性,才得以让消费者愿意支付额外的费用购买无线充电相关产品;如此一来,大批厂商愿意投入资金进行相关产品开发,看好其商机。由于这产技术相当新颖且各厂商有自己对技术的表述,所以无线充电、感应式电力、非接触充电、无接点充电都是泛指相同的技术,距离1mm到数公尺都是一样是无线,供电端与受电端交互作用就称感应,所以无线充电是广义的名词而没有一定的规格。

  1 原理简单,实作困难

  无线充电的方法在实验阶段有开发出很多方法,但目前唯一有机会量产商品化为线圈感应式。线圈感应式的原理很简单,是百年前就被发现物理现象,但过去长久以来这样的线圈感应只运用在绕线式的变压器中。早期就有人发现将绕线式的变压器的将“E”型铁心绕线后对向紧贴后接上市电就可以感应传电,但距离略为分开后感应效果就消失,这是因为在市电60Hz下,电磁波传递会随着距离增加能量快速衰退。在现今的应用中,由于装置本身需要有外壳包装,发射端加上接收端的外壳厚度至少从3mm起算,早期电动牙刷产品开发时就发现当距离拉开后需要将线圈上的操作频率提高才能让电力能传送的更远;在电磁波中有一个特性,就是频率越高的电磁波可以传送比较长的距离后能量衰减较低。后来RFID应用开始发展,主要就规划的三个频段LF低频(125~135KHz)、HF高频(13.56MHz)、UHF超高频(860~960MHz)可以使用,而这些频段也造就了目前无线电力系统在设计之初频率采用的参考点。早在10年前电动牙刷的无线充电就已经上市,当时的传送功率小、充电时间长,在现在的智能手持装置的耗电状况来看,当时的充电能量不敷使用所以10年来还无法实用化。但这几年来发展出新的技术可用较高的“共振”接收效率运作方式,由于这个技术较新所以各界的说法很多,但都是有一个很重要的特性,就是接收线圈上都会有配置电容来构成一个具有频率特性的接收天线,在特定的频率下可以得到较大的功率移转。这部份就跟早期的电磁感应不同,当距离拉开后依然就可以得到良好的电力传送效果。共振的原理非常简单,就跟钢琴调音师一样放不同水量的玻璃杯,在精准的调音下可以将某个玻璃杯透过共振将其振碎;但其它的文章都没有提到,若是没有经过专业钢琴调音师训练的一般人,可能永远也调不出可以让玻璃杯振碎的频率!这就是原理简单、实作困难。

 

  2 展示简单,上市困难

  电子零件出厂时就像是未调过音的钢琴,钢琴透过专业的调音师精准调校后可以发出高品质的声音;当大量生产后为了成本考量可能就无法在每一个产品都经由专业人员调校再出货,如果每一个产品都要专业人员来修正那就会有困难,因为专业人员有限。这就跟目前可以看到很多无线充电产品在很久前就发表了,在发表会上产品都可以完美演出,但过了很久的等待后还没见产品上市?就跟刚提到的例子一样,无线充电的产品为了达到很好的共振效果必需经过精准的调校,在这样的状况下量产会变的非常困难。所以无线充电系统的设计首先必需要能针对共振这部份能自我调整,这样才能解决量产难题。2008年INTEL即发表了可以离一公尺距离的两个线圈传送电力用以点亮60瓦特灯泡,发表当时也宣告了无线电力时代已经到来;但三年过去了相关产品还是没有上市,仔细想一下可以相距一公尺传送电力,这么强大的电磁能量就算对人体没影响、对周遭的电气制品会有非常大的杀伤力。无线电力系统的原理与烹调电磁炉相同,透过电磁波来传送能量只不过目标不同,电磁炉使用频率约50KHz能量发出后给锅具加热用已烹饪,过去网络上就有流传过一段影片就是将手机放在运作中的电磁炉表面上,在短时间内手机即烧毁,这样的原理一样电磁波会穿过手机外壳直接对内部的金属构造加热终至烧毁。前文题到过,为了加长传送距离必需提高传送频率,电磁炉的频率较低在离开数公分后就衰减到安全界限以下,INTEL发表的相距一公尺传送电力必需将频率提高到约13MHz才能传送,在这个状况下线圈之间若是存在金属物体将会被加热而发生危险,表演中工作人员可以站在两个线圈中间不会有危险,是因为人体内的金属成份很少所以温度上升有限。当电磁波频率加到1GHz以上就会直接对水分子加热;这个原理就变成微波炉了,水分子被电磁波搅动后发出热量。所以微波炉与电磁炉不一样,必需在屏蔽体内操作避免为害到人体。这部份又与市面上的无线通讯产品不同,因为能量差距甚大;无线电力系统需要传送电力而发送到受电装置所以需高功率传送,无线通讯产品收到低功率讯号后再透过内部的电池将讯号放大处理。所以不管是在13MHz会对金属加热或是1GHz以上直接伤害人体,无线电力在设计时必需解决安全的问题才能上市,这就是展示简单、上市困难。

  3 三大效能指针——效率、安全、功率

  电动牙刷早在10年前就堆出无线充电了,当时由于功率需求低所以不需要考虑效率与安全。早期的系统转换效率只有20%-30%,且没有安全机制并不会辩识目标连续供电,这样的系统就与微型电磁炉一样。由于功率很小,接收需求只有0.1W上下,只有20%的转换效率下即有80%的能量于传送中转成热量散逸,这样推算发射器提供0.5W的能量到接收器为0.1W的能量,0.4W产生的热量有限对系统的温度上升不明显,且系统最大输出能力也不大即0.5W,所以在发射器上放置金属异物也不会产生危险;但今日的装置需求远高于0.1W,以热销的智能型手机来看接收需要5V-1A 即5W的充电能量,若用电动牙刷的系统进行设计问题就会很大了,接收端5W的需求在只有20%的转换效率下有20W的能量转换成热能散逸,这样的能量会产生庞大的热能会导致系统温度大幅上升,在这样的推算下,系统最大输出能力会在25W,若为无安全设计下于发射器上放置金属异物可能会导致火灾意外,所以在功率需求提高后衍生的问题需要全新的设计来完成无线充电,所以10年前即出现的无线充电到今还改良之中。新设计的系统需为了达到目标功率,必需先解决效率与安全的问题。

4 高转换效率仰赖先进规格零件与材料

  现今无线充电系统都采用共振的方式进行设计,在架构上都大至相同有下列这些构造:

  4.1发射器内有

  A. 直流电源输入

  B. 频率产生装置

  C. 切换电力的开关

  D. 发射的线圈与电容谐振组合


 


  4.2 接收器内有

  A. 接收的线圈与电容谐振组合

  B. 整流器

  C. 滤波与稳压器

  D. 直流电源输出


  在样的架构下从发射器的1.直流电源输入到接收器 D.直流电源输出应过的每一个环节都是效率损耗的要点,在电源电路中电流通过的每一个有阻抗特性的零件都会在上面损耗部份能量,这几年材料的进步也让无线充电的实用化大增,其中有几样先进零件是无线充电系统中与传输效率相关的,为了达到高转换效率需要将这些零件与材料作组合运用。

  A. 频率产生装置:目前有数家公司将此部份开发成IC销售,其为发射电路板上的关键零件。

  B. 切换电力的开关:大多为MOSFET所构成,低导通阻抗与高切换速度是选用的要点。

  C. 发射/接收的线圈与电容谐振组合:此部份为过去从未出现过的技术,由于无规则可循所以只能透过不断的尝试,另外未了阻绝多于的能量散到其它地方,于线圈的未感应侧都会家上磁性材料,这类的材料特性也是全新的应用。

  D. 整流器:由于在线圈上的操作都是高频率、高电压的能量讯号需要能有效的换成直流电才能给受电装置使用,目前大多采用超低VF的萧特基二极管所构成。

  E. 滤波与稳压器:这部份难度在接收装置空间有限,设计上要小型化的困难处,通常高转换效率的电路配置大体积被动零件。

  5 设计最艰难的部份——安全

  先前提到无线充电系统与电磁炉一样会发射电磁波能量,这有两大问题:

  其一为当发射器上没有放目标充电装置时一样在发射能量,长时间下会造成能源的浪费,不符合现在产品节能的趋势。另外一个问题较严重,为当发射器上放的是金属异物,电磁波对其加热;这个状况轻则烧毁装置,重则发生火灾危其人员生命财产。所以无线充电系统若要上市销售,必需要有一个重要的功能即为“受电端目标物辨识”,当正确的目标物放置在发射器上才开始送电,若不是的话则不送电。用来侦测近距离装置的方法有很多,但在无线充电系统上有一个问题就是无法采用昂贵的零件来完成这个功能,记住目前设计的只是一个充电器,若成本太高的话市场会无法接受这个功能。

  而目前有两个实用的方法来完成这个功能: 1. 磁力激活:在受电端上装一个磁铁,当发射端感应到磁力后开始发送能量,这个方法简单有效,因为没有人会无意中放一个磁铁在发射器上让它烧毁。2.感应线圈上的资料传送:这是目前认为最安全的方法,与RFID的原理相同,利用两个线圈内的电力传送中,包含资料码一起传送;这个方法最安全也是最难完成的,因为感应线圈上有高能量的电力传输、另外还包含了系统的噪声与负载电流变化的干扰,如何有效的传送资料码是一大难题。


  6 可变功率系统需建立在数据传输机制上

  一个理想的系统为在无线充电发射器上放置不同的接收器,接收器可为不同的装置从小电力的耳机到大功率的笔记型计算机,都应该要能对应不同的目标物;但每个接收装置的电力需求都不一样,这时发射器必需要能自动调节功率输出。但这样的功能要建立在发射器与接收器要能够传送资料码来进行沟通,所以如何运用感应电力的线圈进行资料码传送是研发的要点。关于这个技术数年前已经有多家公司投入开发,其每家公司的方法有差异在实作上的稳定性也需要再经过验证。

  7 无线充电共通标是理想却难以实现

  目前有业者在推行无线充电标准,理想化的标准是可以跨品牌使用。这个是一个很理想化的目标,所谓的标准就针对两个部份需要规范才能运作;第一就是要有共通的共振频率,电力传输是需要透过预设好的共振频率来传送,发射器提供的电磁波能量之频率需要是接收器的共振频率才能得到好的转换效率。第二就是标准的资料传送码或其它识别激活方式,发射器需要对应到正确的接收器才能开始送电。一个共通的标准的确是市场所期待的,目前在推动无线充电标准化的团体已经运作多时,但在市面上的产品还算少见,这部份可以深入了解后可以发现一些问题,一部份是其标准尚未完整以致研发人员照规格书开发确无法顺利将产品完成;另一个问题是该标准并不是免费的,当产品上市前需要先支付相关专利的权利金,所以共通标准是未来的趋势,但目前实际应用还未成熟。

  8 三大关键组件牵动三个产业链

  就无线充电产品看有三大关键组件,其中有控制电路板、感应线圈、磁性材料。

  目前无线充电尚在起步阶段,市场预期接下来的二到三年会开始高度成长,而四年后将会变成品牌商品的标准备规格之一。这个市场的成长会牵动的产业链不只在电子产业,感应线圈需要精密治具生产这牵动的是机械工业,线圈上需要运用高效能电磁波屏蔽能力的磁性材料这牵动的是化学工业。所以一个产品的成长可以牵动三个产业链,因为这个产品并不是过去已经存在的产品,而是全新的类别全新的应用,相关的材料都要重新开发生产,对经营面来看这也是可以开发的新领域。

 

 

关键字:无线充电系统  设计原理 编辑:冰封 引用地址:无线充电系统设计原理与实作讲析

上一篇:6A类数字电缆的开发与制造
下一篇:用于EMI/RF吸波材料性能比较

推荐阅读最新更新时间:2023-10-18 15:59

一种气体涡轮流量计的原理设计
内容说明 本实用新型属于流量计领域,具体涉及一种气体涡轮流量计。 发明背景 气体涡轮流量计是一种测量封闭管道中气体介质流量的速度式仪表,是集流量、温度、压力检测功能于一体,并能进行温度、压力、压缩因子自动补偿的新一代流量计,是石油、化工、电力、冶金、工业锅炉等工业行业的燃气计量和城市天然气、燃气调压站及燃气贸易计量的理想仪表。但是,现有的气体涡轮流量计还存在如下问题:第一,气体涡轮流量计内未设置过滤层,当气体涡轮流量计前段未设置过滤器,或者过滤器过滤效果差,当带杂质的气体进入气体涡轮流量计会给流量计带来不可挽回的损坏,使流量计不能正常使用;第二,气体涡轮流量计的导流整流效果差,测量精度差;第三,轴承润滑效果差。 发明内容
[测试测量]
一种气体涡轮流量计的<font color='red'>原理</font>及<font color='red'>设计</font>
基于单串降压结构的电源设计原理
下图是基于单串降压结构的电源设计原理图。有些厂商仍喜欢用单串的设计,优点是维修容易,而且可以做模块化设计。不同功率的路灯可以使用相同的灯条,只要更换面板,插上不同数目的灯条,就可以组合出各种不同功率的路灯。但它的缺点是每一串都需要独立的电源模块,成本较高,而降压的结构会让LED的数目受限于IC的耐压。在图中所示的例子中,LED最多串到 14颗,如果要设计20W的灯条,就需要使用700mA的LED。为了使效率达到最高,必需针对LED的数目来调节输入电压,也就是适配器的输出电压。以 10颗LED为例,如果要达到最高效率,就必须把输入电压调到约42V左右。   该方案的优点是降压结构效率较高、单串设计、配置较为灵活,缺点是电路成本
[电源管理]
基于单串降压结构的电源<font color='red'>设计</font><font color='red'>原理</font>图
开关电源原理设计(连载68)
      2-1-1-15.开关变压器的有效导磁率       前面已经指出过,用来代表介质属性的导磁率并不是一个常数,而是一个非线性函数,它不但与介质以及磁场强度有关,而且与温度还有关。因此,导磁率所定义的并不是一个简单的系数,而是人们正在利用它来掩盖住人类至今还没有完全揭示的,磁场强度与电磁感应强度之间的内在关系。       前面我们比较详细地介绍了平均导磁率μa 和脉冲导磁率μ△的概念,以后我们还会碰到初始导磁率μi 、最大导磁率μm 、相对导磁率μr (铁磁材料导磁率与真空导磁率之比,μr=μ/μ0 )和有效导磁率μe等概念,这些,都是人们在不同的使用场合,对铁磁材料的导磁率进行不同的定义,以使分析计算简单。初
[电源管理]
开关电源<font color='red'>原理</font>与<font color='red'>设计</font>(连载68)
开关电源原理设计(连载56)双激式开关电源变压器存在的风险
      2-1-1-7.双激式开关电源变压器存在的风险       上面我们对双激式开关电源变压器工作原理进行分析,都是考虑双激式开关电源变压器完全工作于理想的情况下而得出的结果。因此,图2-6、图2-7和(2-17)、(2-18)式的分析结果都是在理想的工作条件下进行的。如果我们把双激式开关电源变压器的工作条件稍微变动一下,我们将会看到,双激式开关电源变压器在一定的条件下,将会得出很坏的结果,即:双激式开关电源变压器在工作中存在很大的风险。       我们先来看图2-5和图2-6,如果开关变压器的铁芯在这之前已经被其它磁场磁化过,变压器铁芯中的磁通密度B正好停留在剩余磁通密度Br的位置上,那么,当第一个交流脉冲的正
[电源管理]
开关电源<font color='red'>原理</font>与<font color='red'>设计</font>(连载56)双激式开关电源变压器存在的风险
开关电源原理设计(连载65)
      设输入方波的宽度为τ,那么,在输入电压期间,励磁电流iμ 产生的半波平均功率Pμ 为:       Pμ= UIμ = Pr1+Pc (2-76)       或 Pc=UIμ- Pr1=(UIμm/2)- Pr1 (2-77)       (2-76)、(2-77)、(2-78)式中, Pμ为励磁电流产生的半波平均功率;Pc为磁滞损耗半波平均功率;U为电源电压幅度; Iμ为励磁电流半波平均值, Iμm为励磁电流的最大值;Pr1为反激输出电压在负载电阻R1上的半波平均功率。       励磁       电流的最大值 Iμm用示波器很容易可以测到, 正好等于图2-26-b中励磁电流iμ 跟随时
[电源管理]
开关电源<font color='red'>原理</font>与<font color='red'>设计</font>(连载65)
利用2SD315AI设计的驱动大功率IGBT原理
引言 IGBT常用的驱动模块有 TLP250 ,以及EXB841/840系列的驱动模块。但在燃料电池城市客车DC/DC变换器的研制过程中发现,由于车载DC/DC变换器常常工作在大功率或超大功率的状态中,而处在这种状态下的IGBT瞬时驱动电流大,要求可靠性要高,使得传统的驱动电路已经不能满足其使用要求,经过研究分析,选用瑞士CONCEPT公司生产的用于驱动和保护IGBT或功率MOSFET的专用集成驱动模块2SD315A作为大功率IGBT(800A/1200V)的驱动器件,该驱动器集成了智能驱动、自检、状态反馈、DC/DC电源及控制部分与功率部分完全隔离等功能于一体。经过车载90kW DC/DC变换器实际道路工况运行实验表明,效果良好
[电源管理]
利用2SD315AI<font color='red'>设计</font>的驱动大功率IGBT<font color='red'>原理</font>
单片机驱动蜂鸣器原理设计
  蜂鸣器是一种一体化结构的电子讯响器,本文介绍如何用单片机驱动蜂鸣器,他广泛应用于计算机、打印机、复印机、报警器、电话机等电子产品中作发声器件。   蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。   电磁式蜂鸣器由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。接通电源后,振荡器产生的音频信号电流通过电磁线圈,使电磁线圈产生磁场,振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。   压电式蜂鸣器主要由多谐振荡器、压电蜂鸣片、阻抗匹配器及共鸣箱、外壳等组成。多谐振荡器由晶体管或集成电路构成,当接通电源后(1.5~15V直流工作电压),多谐振荡器起振,输出1.5~2.5kHZ的音频信号,阻抗匹配器推动压电
[单片机]
单片机驱动蜂鸣器<font color='red'>原理</font>与<font color='red'>设计</font>
开关电源原理设计(连载66)
      2-1-1-13.双激式变压器铁芯磁滞损耗、涡流损耗的测量       双激式变压器铁芯的磁滞损耗和涡流损耗在工作原理上与单激式变压器铁芯的磁滞损耗和涡流损耗是有区别的。首先双激式变压器初级线圈输入的电压是双极性脉冲,电源在正负半周期间都向它提供能量。其次,单激式变压器铁芯是靠变压器初级线圈自身产生的反电动势在电路中产生的电流进行退磁的,而双激式变压器铁芯,除了靠变压器初级线圈自身产生的反电动势在电路中产生的电流进行退磁之外,当另一反极性电压脉冲加到变压器初级线圈上时,原励磁电流存储的能量还可以反馈给换相输入电压进行充电。       在双激式变压器铁芯中,磁滞损耗也是由流过变压器初级线圈励磁电流产生的磁场在铁
[电源管理]
开关电源<font color='red'>原理</font>与<font color='red'>设计</font>(连载66)
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved