开关电源原理与设计(连载66)

最新更新时间:2011-03-02来源: 互联网关键字:开关电源 手机看文章 扫描二维码
随时随地手机看文章

      2-1-1-13.双激式变压器铁芯磁滞损耗、涡流损耗的测量

      双激式变压器铁芯的磁滞损耗和涡流损耗在工作原理上与单激式变压器铁芯的磁滞损耗和涡流损耗是有区别的。首先双激式变压器初级线圈输入的电压是双极性脉冲,电源在正负半周期间都向它提供能量。其次,单激式变压器铁芯是靠变压器初级线圈自身产生的反电动势在电路中产生的电流进行退磁的,而双激式变压器铁芯,除了靠变压器初级线圈自身产生的反电动势在电路中产生的电流进行退磁之外,当另一反极性电压脉冲加到变压器初级线圈上时,原励磁电流存储的能量还可以反馈给换相输入电压进行充电。

      在双激式变压器铁芯中,磁滞损耗也是由流过变压器初级线圈励磁电流产生的磁场在铁芯中产生的;但在单激式变压器铁芯中,有一部分励磁电流存储的能量要转化成反激式电压向负载输出;而在双激式变压器铁芯中,励磁电流产生的能量基本上都是用于充磁与消磁。因此,双激式变压器铁芯的磁滞回线的面积比单激式变压器铁芯磁滞回线的面积大很多,磁滞损耗也大很多。

      双激式变压器铁芯涡流损耗的机理与单激式变压器铁芯涡流损耗的机理基本是一样的,但双激式变压器铁芯的涡流损耗要比单激式变压器铁芯的涡流损耗大很多,因为,双激式变压器铁芯的磁通密度变化范围比单激式变压器铁芯的磁通密度变化范围大很多。

      根据(2-65)式和(2-66)式以及图2-19和图2-20的分析结果,我们可以用图2-27电路来测试双激式开关变压器的磁滞损耗和涡流损耗。与图2-25的工作原理基本相同,图2-27的主要工作原理是,在变压器初级线圈两端加一序列双极性电压方波,然后测试流过变压器初级线圈的电流i ;其中,i =iμ +ib ,iμ 为励磁电流, ib为产生偿涡流损耗的电流。

      根据前面分析,磁滞损耗主要由励磁电流iμ 产生的,但双激式开关变压器初级线圈中的励磁电流与单激式开关变压器初级线圈中的励磁电流产生的作用并不完全相同。单激式开关变压器初级线圈中的励磁电流产生磁场对变压器贴芯进行充磁和退磁外,其存储的能量只能用来作为反激式输出给负载,因为变压器初级线圈输入的电压是单极性脉冲,变压器初级线圈无法换相。

      而双激式开关变压器初级线圈中的励磁电流除了用来消磁和充磁以外(即转换成磁滞损耗),其存储的能量还可以反馈给换相输入电压进行充电,因为励磁电流存储的能量产生反电动势的方向正好与换相时输入电压的方向相反,两者作用互相对消,使原来流过初级线圈中的励磁电流由最大值迅速下降到0,即:反电动势的能量被迅速转移到输入电路中,相当于能量被重复利用。

      图2-27中,U是电源电压,N为变压器初级线圈,控制开关K1、K2、K3、K4组成桥式开关控制电路,K1和K4为一组,K2和K3为一组,两组开关轮流接通与断开,把电源电压正反向加于变压器初级线圈两端;R为取样电阻,通过测量R两端的电压,就可以知道流过变压器初级线圈的电流;取样电压被送到示波器Dp进行显示。

      图2-28是图2-27电路中变压器初级线圈两端电压、电流以及取样电阻上的电压波形图。图2-28-a是变压器初级线圈两端的电压波形;图2-28-b是流过变压器初级线圈两端的电流波形;图2-28-c是取样电阻两端的电压波形。

      在0-t1期间,控制开关K1和K4接通,同时K2和K3关断;电源电压U通过K1和K4加于变压器初级线圈a、b两端;流过变压器初级线圈的电流i 由 iμ和ib 两部分组成, iμ和ib 的数值分别由(2-65)式和(2-66)式决定;其中, iμ为励磁电流,其值随时间线性上升; ib为涡流损耗电流,其值为常数,不随时间改变。[page]

      在t1-t2期间,控制开关K2和K3接通,同时K1和K4关断;电源电压U通过K2和K3加于变压器初级线圈b、a两端;相当于变压器初级线圈的输入电压被反相,流过变压器初级线圈的电流 i还是由iμ 和 ib两部分组成,但iμ 和ib 的方向均与原来相反; 的数值基本不变; 在一开始瞬间是作为反电动势输出能量给电源充电,方向与输入电流方向相反,充电过程很快结束,电流为0;然后,电源反过来给变压器初级线圈供电,励磁电流作为变压器铁芯的消磁和充磁能源,开始反方向线性上升。

      iμ 和ib 的数值,不管是正方向还是反方向,分别都是由(2-65)式和(2-66)式决定;其中,iμ 为励磁电流,其值随时间线性上升; ib为涡流损耗电流,其值为常数,不随时间改变。

      我们从图2-28-b中可以看出,在输入电压作用期间,励磁电流 iμ是跟随时间线性增长的;而涡流损耗电流ib 为常量,它不会跟随时间线性变化;因此,用示波器很容易就可以把它们区分开来,通过测量取样电阻R两端的电压,就可以间接测量iμ 和ib的数值。

      设输入序列电压脉冲方波的宽度为τ,周期为T,T = 2τ,那么,在输入电压期间,励磁电流 iμ 产生的磁滞损耗半波平均功率以及磁滞损耗全波平均功率均相等,因此,我们可以把它们统称为磁滞损耗平均功率Pμ。

      Pμ = UIμ (2-85)

      (2-85)和(2-86)式中, Pμ为双激式开关变压器铁芯的磁滞损耗平均功率; Iμ为流过双激式开关变压器初级线圈励磁电流的平均值; Iμm为流过双激式开关变压器初级线圈励磁电流的最大值;τ为输入电压脉冲方波的宽度。

      根据(2-66)式以及图2-19、图2-20和图2-28的分析结果可知,涡流损耗是由涡流损耗电流ib 产生的。并且由图2-28看出,涡流损耗电流 ib产生的涡流损耗半波平均功率以及涡流损耗全波平均功率均相等,因此,我们可以把它们统称为涡流损耗平均功率Pb ,由此,可以求得涡流损耗电流ib 产生的平均功率Pb 为:

      Pb= UIb = U ib (2-87)

      (2-87)式中, Pb为双激式开关变压器铁芯的涡流损耗平均功率;U为电源电压幅度; Ib为涡流损耗电流的半波平均值, Ib =ib ,因为ib 为一常数值。
      由(2-85)、(2-86)、(2-87)式可以看出,计算双激式开关变压器铁芯的磁滞损耗和涡流损耗要比计算单激式开关变压器铁芯的磁滞损耗和涡流损耗,简单很多。

      当加到变压器初级线圈两端的电压为正弦波时,变压器铁芯的磁滞损耗和涡流损耗可分别用(2-88)和(2-89)经验公式进行估算:

      (2-88)式中, Pμ为输入电压为正弦波时变压器铁芯的磁滞损耗[W]; kμ为与铁磁物质有关的系数(由试验决定);f 为频率[Hz],即每秒反复磁化的系数; Bm为磁滞回线上磁感应强度的最大值[Wb/m2];V为变压器铁心的体积[m3]; n为由Bm的范围决定的指数,当0< Bm<1.0[Wb/m2]时,n ≈ 1.6 ;当 0<Bm<0.1[Wb/m2] 或1<Bm<1.6[Wb/m2] 时,n ≈ 2 。

      (2-89)式中, Pb为输入电压为正弦波时变压器铁芯的磁滞损耗[W]; kb为与铁磁物质电阻率、截面积、体积、形状有关的系数(由试验决定); f为频率[Hz];Bm 为磁滞回线上磁感应强度的最大值[Wb/m2];V为变压器铁心的体积[m3]。

      这里顺便指出,利用(2-88)和(2-89)式来分别测试变压器铁心的磁滞损耗和涡流损耗是非常困难的;一个是它们的系数很难决定,另一个是两者很难分别进行测量,或从测量结果中进行分离。对比两式的参数就可以知道,它们之间最大的区别是频率对损耗的影响程度;一个是与频率成正比,另一个是与频率的平方成正比。理论上可以通过改变输入电压频率的方法来进行测量,然后再对测试结果进行分离;但当输入电压的参数与变压器的实际工作情况相差太远时,测试结果将毫无意义。


 


关键字:开关电源 编辑:冰封 引用地址:开关电源原理与设计(连载66)

上一篇:开关电源原理与设计(连载65)
下一篇:开关电源原理与设计(连载67)

推荐阅读最新更新时间:2023-10-18 15:09

开关电源原理与设计(连载42)半桥式变压器开关电源的优缺点
1-8-2-6.半桥式变压器开关电源的优缺点 半桥式变压器开关电源与推挽式变压器开关电源一样,由于两个开关管轮流交替工作,相当于两个开关电源同时输出功率,其输出功率约等于单一开关电源输出功率的两倍。因此,半桥式变压器开关电源输出功率很大,工作效率很高,经桥式整流或全波整流后,输出电压的电压脉动系数Sv和电流脉动系数Si都很小,仅需要很小的滤波电感和电容,其输出电压纹波和电流纹波就可以达到非常小。 半桥式变压器开关电源最大的优点是,对两个开关器件的耐压要求比推挽式变压器开关电源对两个开关器件的耐压要求可以降低一半。因为,半桥式变压器开关电源两个开关器件的工作电压只有输入电源Ui的一半,其最高耐压等于工作
[电源管理]
开关电源EMI整改频段干扰原因及抑制办法
开关电源EMI整改中,关于不同频段干扰原因及抑制办法: 1MHZ以内----以差模干扰为主 1.增大X电容量; 2.添加差模电感; 3.小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)。 1MHZ---5MHZ---差模共模混合 采用输入端并联一系列X电容来滤除差摸干扰并分析出是哪种干扰超标并以解决, 1.对于差模干扰超标可调整X电容量,添加差模电感器,调差模电感量; 2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制; 3.也可改变整流二极管特性来处理一对快速二极管如FR107一对普通整流二极管1N4007。 5M---以上以共摸干扰为主
[电源管理]
基于UC3844的反激开关电源设计
  随着现代科技的飞速发展,开关电源正朝着小、轻、薄的方向发展。反激变换器因具有电路拓扑简单、输入电压范围宽、输入输出电气隔离、体积重量小、成本低、性能良好、工作稳定可靠等优点,被广泛应用于实际变换器设计中。以前大多数开关电源采用离线式结构,一般从辅助供电绕组回路中通过电阻分压取样,该反馈方式电路简单,但由于反馈不是直接从输出电压取样,没有与输入隔离,抗干扰能力也差,下面的设计采用可调式精密并联稳压器TL431配合光耦构成反馈回路,达到了更好的稳压效果。   1 UC3844芯片的介绍   UC3844是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片,由该集成电路构成的开关稳压电源与一般的电压控
[电源管理]
基于UC3844的反激<font color='red'>开关电源</font>设计
概述串联式开关电源的工作原理
  几种基本类型的开关电源   顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。   开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或 DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压
[电源管理]
概述串联式<font color='red'>开关电源</font>的工作原理
Power Integrations推出全新LinkSwitch-TN2开关电源IC
德国慕尼黑 2016年11月8日 致力于高能效电源转换的高压集成电路业界的领导者Power Integrations公司(纳斯达克股票代号:POWI)今日推出LinkSwitch -TN2离线式开关电源IC,新器件适用于输出电流在360 mA以内的非隔离式电源应用。LinkSwitch -TN2器件可用来设计降压、降压-升压或非隔离反激拓扑变换器,能实现高精度、高效率以及出色的空载性能。新器件集成了全新的安全保护特性,包括输入和输出过压保护以及具有725 V击穿电压的高可靠性MOSFET,可提供强大的输出短路和过热保护,防止输入浪涌和电压骤升。其应用范围包括家电、暖通空调(HVAC)、工业控制、智能家居(IOT)和电表系统,特别
[电源管理]
Power Integrations推出全新LinkSwitch-TN2<font color='red'>开关电源</font>IC
浅谈开关电源PCB设计
对于开关电源的研发,PCB设计占据很重要的地位。一个差的PCB,EMC性能差、输出噪声大、抗干扰能力弱,甚至连基本功能都有缺陷。 与其他硬件电路PCB稍有不同,开关电源PCB有一些自身的特点。本文将结合工程经验,简单谈一谈开关电源PCB布线的一些最基本的原则。 1、 间距 对于高电压产品必须要考虑到线间距。能满足相应安规要求的间距当然最好,但很多时候对于不需要认证,或没法满足认证的产品,间距就由经验决定了。多宽的间距合适?必须考虑生产能否保证板面清洁、环境湿度、其他污染等情况如何。 对于市电输入,即使能保证板面清洁、密封,MOS管漏源极间接近600V,小于1mm事实上也比较危险了! 2、 板边缘的元器件 在PCB边沿的
[电源管理]
浅谈<font color='red'>开关电源</font>PCB设计
基于开关电源系统的电磁兼容问题的探讨
引言 随着电子技术的飞速发展,电子设备同时也朝着功能集成化,体积小型化方向发展,这给我们带来诸多的便利,但是各种电子设备之间的电磁耦合也成了工程师们面对的主要问题。电子环境污染的危害性不亚于传统的环境污染。而电磁污染作为环境污染的一部分也被提上了议程。电子设备在正常工作时候,会承受各种电磁干扰,包括自身内部器件的相互干扰,以及周围其他电子设备的干扰,同时会对周围其他的电子设备产生电磁干扰。电子设备在不同应用环境中(家用、工控、电力)要求差异性非常大,这方面可以参考通用标准IEC/EN61000-6系列或者对应产品的行业要求。 这种电磁干扰在传输途径方面主要是包括两个方面:一是沿着线束进行传输,这方面主要包括沿着电源端口进行传输以及
[电源管理]
基于<font color='red'>开关电源</font>系统的电磁兼容问题的探讨
一个简易型115VAC供电的彩色电视机开关电源
    摘要: 介绍一个工作于115VAC的简易型全分立元器件彩色电视机开关电源。该电源基于早年国内常用的三洋80P机芯电路,经过重新设计高频变压器以及调整元器件参数而成。文中给出基本原理,设计数据及测试结果,可供有意于开拓北美市场的电视机厂家参考。     关键词: 彩色电视机  开关电源 1 引言 图1所示为220VAC供电的三洋80P机芯电源,它早年曾广泛使用在一些国内电视机中,其特点是:采用常规双极型功率管,全分立元器件,电路简单,成本低,但却能满足电视机基本稳压要求,而且EMI噪音特少。其缺点是:动态反应较慢,AC/DC转换效率稍低(最高只有80%),稳压范围较窄(只有VI±10%),而对负
[手机便携]
小广播
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved