新型高线性折叠结构混频器设计

最新更新时间:2011-11-06来源: 互联网关键字:高线性  混频器  折叠结构 手机看文章 扫描二维码
随时随地手机看文章

混频器作为收发机中的关键模块之一,对通信设备的上述性能产生直接的影响。随着微电子工艺的发展, CMOS器件的栅长进一步缩小,MOS器件的过驱动电压也进一步降低,这就为设计低压低功耗的射频电路提供了可能,但是依靠减小MOS器件的栅长降低工作电压是有限的。因此,电路设计者把更多的注意力集中到电路拓扑结构上,使设计具有低压结构的射频电路成为了热门课题。

  传统的Gilbert混频器由跨导级、开关级、负载级堆叠组成,其结构自下而上分别为跨导级、开关级、负载级。这种结构中,所有的直流电流都流经跨导级、开关级和负载级,跨导级与开关级电路都需要一个开启电压(VON ) ,负载级也会有一定的电压降(VRL ) , 因此, 电源电压的最小值Vdd,min = 2Von +VRL。如果采用低电源电压,这种结构不能保证所有的管子都工作在饱和区。也就是说, Gilbert混频器不能满足低电压的要求,需要对其做出改进, 如:文献[2 - 3 ]提出省去尾电流管来减小电源电压,文献[ 4 - 11 ]用折叠结构代替堆叠结构来解决上述问题。

  文献[ 8 ]给出了折叠结构和堆叠结构的比较,折叠结构增加了两个射频中断电路和一个耦合电容。这样对直流通道来说,跨导级与开关级、负载级的直流电路分开,两条支路相互独立,互不影响。电源电压只需提供相当于一个开启电压(Von )的值就能使跨导管与开关管都工作在各自的饱和区, 即电源电压的最小值Vdd,min = Von + VRL 。达到了低电源电压的目的。但是, 射频中断电路一般用LC 谐振网络实现,电感的使用增加了电路的版图面积和噪声。本文设计了一种新的折叠结构混频器,电路不使用具有大电感的LC谐振电路,工作于1. 2 V 电压时,得到了低电压、低功耗、低噪声和高线性度的性能。

  1 电路设计与分析

  1. 1 电路拓扑结构

  本文设计的折叠混频器拓扑结构如图1所示,M1 ~M4 为跨导级,M5 ~M8 为开关级, RL 为负载电阻。RF输入端接匹配网络, IF输出端接源跟随器作为输出缓冲电路( buffer) 。

  

 

  图1 交流耦合折叠混频器拓扑结构

  该折叠混频器电路的跨导级采用电流复用技术,由NMOS管(M1、M2 ) 、PMOS管(M3、M4 )和隔直电容Cd 组成交流耦合互补跨导结构。跨导级的输出端(A、A′点)与开关管的源极相连。跨导级直接接于电源电压,使得跨导管M1 和M2 的直流电流由两部分组成,一部分来自M3 和M4 ,另一部分来自开关管和负载电阻,达到了低电源电压的目的。

  由于流经开关级与负载级的电流很小,这样一方面使得开关管产生的闪烁噪声减小,另一方面负载电阻RL 值可以适当加大,从而提高了混频器的转换增益。所以该电路既满足了低电压的要求,又能保证混频器在低电源电压下有良好的性能。

  1. 2 跨导电路设计

  图2是几种折叠混频器跨导电路。图2 ( a)在跨导级NMOS管M1 漏端接负载电阻R ,M1 管的电流In 在A 点分流,一部分流经开关管( Is ) ,另一部分流经负载电阻( Ir ) ,但是这种跨导电路的缺点是射频信号一部分通过负载电阻R 泄露到交流地。

  为了减少射频信号的损失,必须增加电阻R,这样又会使节点A 的直流电压减小,在低电源电压下,不能保证M1 管工作在饱和区。为了解决这个问题,用有源负载替代负载电阻R ,如图2 ( b) 。但是,这里的PMOS管仅仅增大了节点A与电源电压之间的阻抗,如果把M1 和M2 的栅极连起来,形成CMOS反相器结构,那么M2 在增加阻抗的同时还能跟M1共同放大射频信号 ,如图2 ( c) ,这样就完全避免了射频信号通过M2 泄露到交流地。由图可知, Is =In + Ip ,总跨导gm = gm n + gm p ( gm n是NMOS管的跨导, gm p是PMOS管的跨导) ,所以CMOS反相器有效地提高了混频器的转换增益。

  

 

  图2 折叠混频器的跨导级几种结构

  再来分析一下该结构的直流工作状况,M1 和M2 的栅极加相同偏置电压Vrfdc ,假设Vt 为MOS管的阈值电压, Vovn为M1 的过驱动电压, Vovp为M2 的过驱动电压,则有: Vovn =Vrfdc - Vt , Vovp =Vdd - Vrfdc -Vt ,所以电源电压最小值Vdd,min = Vovn + Vovp + 2Vt。

  在0. 18μm CMOS工艺中, Vt 典型值为500 mV,因此用反相器作为跨导电路的混频器只适用于1 V以上的电源电压。为了使混频器能满足更低的电压,在M1 和M2 之间增加隔直电容Cd ,M1 和M2 管偏置分开,如图2 ( d) 。这种结构称为交流耦合互补跨导。假设Vrfdcn为M1 的偏置电压, Vrfdcp为M2 的偏置电压,则电源电压的最小值Vdd,min = Vovn + Vovp + 2Vt+Vrfdcp - Vrfdcn ,可见,在Vrfdcn >Vrfdcp时, Vdd,min比常规反相器更小,适用于更低的工作电压。

  1. 3 性能分析

  1. 3. 1 增益

  假设本振信号LO为理想方波信号, 则该混频器(如图1)的增益可表示为:

  

 

  gm n是M1 和M2 的跨导, gm p是M3 和M4 的跨导, R 即负载电阻RL 的值。因为开关管的漏极电流很小,所以负载电阻值可以适当增加,由式( 1)知,混频器的增益将随之提高。值得注意的是,增大负载电阻值的同时必须保证节点A 的直流电压足够使得M1 和M2 工作在饱和区。

  1. 3. 2 噪声系数

  假设本振信号为理想方波信号,并考虑镜像频率的影响,噪声系数的表达式为:

  

 

  RS 为源阻抗, RL 为负载电阻值, 系数γn 对长沟道晶体管来说等于2 /3,对于亚微米MOSFET,γn 的值较大。由式(2)知,只要选择合理的偏置电压Vrfdcn、Vrfdcp和M1~M4的宽长比, 噪声系数随着跨导的增加而减小。

  1. 3. 3 线性度

  如果节点A (见图1)的电压过高,开关管将会关断。也就是说,如果M1 和M3 的电流很大,M1 和M2的输出端电压也增大,这样就会关断开关管M7 和M6或者M5 和M8。开关管进入线性区,影响混频器的线性度,所以降低节点A 的电压,并让开关管远离线性区 ,即Vgs≈Vth ,能提高混频器的线性度。

2 电路仿真

 

  该混频器设计基于SM IC 0. 18 μm标准CMOS工艺,用Advanced Design SySTem软件进行电路设计与仿真。电源电压1. 2 V; RF频率为2. 5 GHz,功率为- 30 dbm; LO频率为2. 6 GHz,本振信号的电压摆幅VLO = 600 m Vpp。

  图3是三阶交调点( IIP3)随本振功率变化曲线,在本振功率为0 dBm时, IIP3达到最大值3. 857dBm。当本振功率大于或小于0 dBm时, IIP3都会急剧下降。图4是噪声系数(NF)和转换增益(Con2version Gain)随本振功率变化曲线,本振功率为- 3dBm时,噪声系数达最小值4. 982 dB,本振功率为- 5 dBm时,转换增益达到最大值11. 23 dB。考虑到混频器的整体性能,必须采取折衷,所以选择本振功率为0 dBm,此时,噪声系数为5. 257 dB,转换增益为9. 787 dB。图5是当本振功率为0 dBm时,噪声系数随输出频率变化曲线,噪声系数随着输出频率的增加不断减小,在输出频率为100 MHz时,噪声系数为5. 257 dB。

  

 

  图3 IIP3随本振功率变化曲线。

  

 

  图4 NF与转换增益随本振功率变化曲线。

  

 

  图5 NF随输出频率变化曲线。

  图6是该折叠混频器的版图,该版图用CadenceVirtuoso Layout editor进行设计及优化。RF输入端的匹配网络与IF输出端的buffer都集成在了片内,版图面积556μm ×966μm。

  

 

  图6 折叠混频器版图。

  表1是本文设计的折叠混频器整体性能的仿真结果,并与其他发表的论文做了比较,可以看出该混频器具有高线性度,低噪声的优点。

  表1 混频器性能总结与比较

  

 

  3 总结

  本文采用交流耦合互补跨导级成功设计了一种适用于低电源电压下工作的折叠混频器。仿真结果表明,该混频器具有高线性度、低噪声的优点。

关键字:高线性  混频器  折叠结构 编辑:冰封 引用地址:新型高线性折叠结构混频器设计

上一篇:电荷泵型LED驱动器的CMOS误差放大器设计
下一篇:利用屏蔽栅极功率 MOSFET 技术降低传导和开关损耗

推荐阅读最新更新时间:2023-10-18 16:01

Diodes 公司推出高效率和准确度的线性 LED 控制器
德州布兰诺 – 2018 年 3 月 28 日。Diodes 公司推出 AL5814、AL5817、AL5815 以及AL5816 线性 LED 控制器,为 LED 灯条提供可调光和可调节的驱动电流,效率高达 80% 以上。AL58xx 系列提供物料列表 (BOM) 成本低廉的解决方案,适用于商业和工业领域的各项产品应用,包括广告牌、仪器照明、家电内部照明、建筑细部照明以及一般智能照明设备。 这些装置的输入范围为 4.5V 至 60V,无需电感,可保持良好的 EMI 效能,使系统整合更简单。此外,相较于其他设计,外部功率晶体管可使内部功耗降至最低。AL58xx 系列可提供高达 15mA 的电流给外部 MOSFET 或双极
[半导体设计/制造]
1.2V线性度低噪声折叠混频器设计
     目前,无线通信设备正朝着低电压、低功耗、低噪声和高线性度的趋势发展。混频器作为收发机中的关键模块之一,对通信设备的上述性能产生直接的影响。随着微电子工艺的发展, CMOS器件的栅长进一步缩小,MOS器件的过驱动电压也进一步降低,这就为设计低压低功耗的射频电路提供了可能,但是依靠减小MOS器件的栅长降低工作电压是有限的。因此,电路设计者把更多的注意力集中到电路拓扑结构上,使设计具有低压结构的射频电路成为了热门课题。   传统的Gilbert混频器由跨导级、开关级、负载级堆叠组成,其结构自下而上分别为跨导级、开关级、负载级。这种结构中,所有的直流电流都流经跨导级、开关级和负载级,跨导级与开关级电路都需要一个开启电压(VO
[网络通信]
混频器IP3的测量以及测试误差的来源分析
混频器线性度一直是射频系统设计面临的一个关键问题。混频器的非线性会产生不需要的、不可滤的杂散、互调和非线性失真。例如,非线性混频可能导致不希望的杂散,例如2fRF✕2fLO 或2fRF✕fLO 频率分量,加剧射频系统频谱再生问题。 1、IP3和IMD IP3是分析双音信号与其产生的互调项之间的关系的线性品质因数。 PInput 是双音射频输入信号的平均功率。PFund 是频率 和 的平均功率。PIMD3 是 和 处的交调产物的平均功率(注意这里,非变频器件的三阶产物应该是2f1-f2和2f2-f1;变频器件双音互调后,再与LO变频得到 和 。 图1.1 混频器的输出理论频谱 IIP3和OIP3都可以评估器件的非线性,混
[测试测量]
<font color='red'>混频器</font>IP3的测量以及测试误差的来源分析
Maxim线性度双通道SiGe下变频混频器
      Maxim推出用于DCS/PCS、cdma2000™、WCDMA、WCS、LTE、WiMAX™和MMDS无线基础设施的高性能、双通道、下变频混频器系列产品MAX19995/ MAX19995A/ MAX19997A/ MAX19999。这些混频器加上之前发布的MAX19985A,构成了完备的700MHz至4000MHz频段基站下变频器解决方案。       器件采用Maxim专有的SiGe工艺设计,集优异的线性度、噪声性能和高度的器件集成特性于一体。如性能和应用表所示,器件具有高达24.8dBm的IIP线性度、9dB的转换增益以及优异的79dBc 2RF-2LO杂散抑制,且噪声系数极低,仅为9dB。上述参数指标对增
[电源管理]
Maxim推出线性度最高的下变频SiGe混频器
Maxim推出带有片内LO缓冲器的完全集成、2000MHz至3900MHz下变频混频器MAX19996A。器件采用Maxim专有的单片SiGe BiCMOS工艺设计,集优异的线性度、噪声性能和高度的器件集成特性于一体,能够工作于极宽的频段范围。MAX19996A提供完全集成的下变频通道,具有+24.5dBm (典型值) IIP3、8.7dB (典型值)转换增益和9.8dB (典型值)噪声系数。此外,器件具有业内最佳的2LO-2RF杂散抑制:-10dBm RF电平下为67dBc,-5dBm RF电平下为62dBc。MAX19996A专为3G/4G无线基础设施应用而设计,在这些应用中高线性度和低噪声系数对增强接收器的灵敏度和抗阻
[模拟电子]
集成RF混频器与无源混频器方案的性能比较
摘要: 本应用笔记比较了集成RF混频器与无源混频器方案的整体性能,论述了两种方案的主要特征,并指出集成方案相对于无源方案的主要优点。 过去,RF研发人员在高性能接收器设计中使用无源下变频混频器取得了较好的整体线性指标和杂散指标。但在这些设计中使用分立的无源混频器也存在一些缺点。 为了达到接收器整体噪声系数的指标要求,需要在射频(RF)增益级或中频(IF)增益级补偿无源混频器的插入损耗。与集成混频器相比,使用无源混频器时,用户不仅要考虑其输入三阶截点(IIP3),还要考虑输出三阶截点(OIP3)。无源混频器的二阶线性指标一般都比集成平衡混频器的差,而该指标在考虑接收器的半中频杂散性能时非常重要。由于混频
[手机便携]
集成RF<font color='red'>混频器</font>与无源<font color='red'>混频器</font>方案的性能比较
Linear推出新型宽带有源上变频混频器LT5578
凌力尔特公司 (Linear Technology Corporation) 推出新型宽带有源上变频混频器 LT5578,该器件在 400MHz 至 2.7GHz 的频段内提供了高动态范围性能,并支持所有的分配型 LTE (长期演进) 宽带无线业务。在 900MHz 时,该混频器提供了 27dBm 的输出 IP3 线性度和同类最佳的 -160.5dBm/Hz 噪声层 (在 -5dBm 的输出电平条件下),从而实现了绝佳的发送器动态范围。此外,该混频器还具有 1.4dB 的转换增益和用于提供一个单端 RF 输出和 LO (本机振荡器) 输入的集成 RF 平衡-不平衡变换器,旨在简化设计并减少外部元件的数目。而且,该器件的 LO
[手机便携]
Linear推出新型宽带有源上变频<font color='red'>混频器</font>LT5578
MAX9985线性度、700MHz至1000MHz下变频混频器
MAX9985高线性度、双通道下变频混频器具有约6dB增益、+28.5dBm IIP3和10.5dB噪声系数(NF),可理想用于分集接收机应用。该混频器具有700MHz至1000MHz RF频率范围和570MHz至865MHz LO频率范围,非常适合于低边LO注入接收结构。另外,较宽的频率范围使MAX9985非常适合GSM 850/950、2G/2.5G EDGE、WCDMA、cdma2000®和iDEN®基站应用。 MAX9985双通道下变频混频器具有极高的集成度。MAX9985包括两个双平衡有源混频器内核、两个LO缓冲器、一个双输入LO选择开关和一对差分IF输出放大器。另外,RF和LO端集成的片内非平衡变压器允许器件接收
[模拟电子]
MAX9985<font color='red'>高</font><font color='red'>线性</font>度、700MHz至1000MHz下变频<font color='red'>混频器</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved