短波宽带低压功率放大器的设计与实现

最新更新时间:2011-11-16来源: 与非网关键字:短波功率  放大器  无线通信 手机看文章 扫描二维码
随时随地手机看文章

功率放大器在无线通信系统中是一个不可缺少的重要组成部分。随着通信体制的发展,功率放大器进入了快速发展的阶段。目前功放的主要应用趋向微波频段,尤其是民用的井喷式发展,相对地1.6~30 MHz的功放应用越来越少,随之此频段的可选功放管的研发新品也随之减少,在功放指标不断被要求提高的前提下,这就造成此频段功放的设计的困难增加,其中宽带低压大功率功放的设计最为困难。

1 指标要求

该项目是军用短波发射机部分的重要组成部分,根据项目的的具体使用场合和环境特点,按照GJB规定和整机要求,对于功率放大器提出以下指标要求:

(1)频率范围:1.6~29.9999MHz;

(2)输出功率:单音功率为100 W(AVG),双音峰包功率为100W;

(3)激励幅度:单音0 dBm(50 Ω阻抗);

(4)增益:50 dB;

(5)增益平坦度:±1dB;

(6)功耗:在输出功率100 W,电源电压13.8V条件下,电流小于16A;

(7)工作电压:11~17 V能够正常工作;

(8)测试电压:12.5 V,13.8V;

(9)三阶互调:小于等于-32 dB(测试条件为:双信号、间隔0.67 kHz,平均功率50 W,PS=13.8V;

(10)谐波:偶次谐波小于等于-20 dB,奇次谐波小于等于-13dB。

2 线路方案

采用对管推挽电路、负反馈电路和传输线变压器,可以满足增益平坦度的要求。功率放大单元由激励放大级、末前级放大级、末级功率放大级、Ⅱ型衰减输入网络、偏置电路、总流控制和温度控制电路组成。根据射频输入信号幅度和输出功率的要求计算功放总增益:

VIN=0 dBm;POUT=50 dBm;GP=50 dB

根据功放总增益和频带范围(1.6~30 MHz),功放按三级设计。增益分配和每级采用的电路形式分别为:第一级采用甲类工作状态,增益大于25 dB,输出功率约25 dBm;末前级采用甲乙类工作状态,增益大于16dB,输出功率约41 dBm;末级采用甲乙类工作状态,增益大于12 dB,输出功率约为53 dBm。

各级之间采用传输线变压器耦合,磁性材料选用进口双孔磁环,磁通密度一致性好,对于全频段的增益平坦度大有好处。利用传输线变压器在宽频带范围内传送高频能量和实现两极放大器之间的匹配和末级放大与负载之间的阻抗匹配。由于受低压功放管市场奇少的限制,末级选用输出功率为80 W的晶体管,末级采用对管推挽输出,从而保证了功率的富余量。甲类功率放大器的优点是线性好、失真小,较好的噪声系数,在1 dB压缩点以下具有几乎不失真的脉冲响应,在不同输出电平时的通带起伏小和在不同输出电平时的相位和增益不变,在第一级采用了甲类工作状态,以便获得良好的线性。

 

3 末级功放管单管测试

在试验PCB板上将功放管涂抹导热硅脂后用螺钉紧紧地紧固在散热铝板上,根据资料搭建以上测试电路,调试过程中根据经验和输出指标不断调整匹配参数,最终确定表1所示参数数值。

 

从以上的试验测试得出如图2~图4结果。参考以上数据,得出以下结论:输出功率要达到100 W时、输入功率需要10 W左右;该管的增益在1.6~30 MHz范围内波动10 dB;输出功率在25~80 W范围内三阶互调与五阶互调均优于-35 dB。从而设计理论依据为,末级采用两只功放管推挽输出方式,理论上可实现功率为单管输出功率的2倍,再折合效率80%,简单计算80x2×80%=128 W,稍有余量。在此范围内的输出可满足三阶与五阶互调优于-35 dB,不仅满足设计指标中输出功率要求,也满足了互调指标要求。

4 功放与滤波器的匹配

一般常用小型号法设计匹配滤波器,在实际工程设计中都能做到功放输出与滤波器输入阻抗良好匹配,从而有效实现谐波抑制。但在该次试验中,5.62~8.82 MHz波段不能完全实现有效的阻抗匹配。滤波器的小信号仿真指标良好,阻抗基本在50 Ω附近,插损小于0.1dB,通带S参数也不错,但匹配后总体测试结果是频率7 MHz插损大,效率大大降低,也严重影响了功放的线性度。调整滤波器后可改善频率7 MHz附近频点到要求指标。但8.6 MHz又出现同样的阻抗失配,造成线性度严重降低。通过长时间的不断试验和总结,也未能解决此问题。一次试验中偶然发现功放输出到滤波器输入的射频电缆长度在某一确定值时,可实现此频段的完全阻抗匹配,全频段测试指标均满足设计要求,仔细分析后测试此射频电缆的阻抗参数,发现芯线两端之间存在0.2μH的感值,芯线与地线之间也存在28 pF的容值。原来射频电缆在连接功放输出与滤波器输入的同时,对于此频率相当于串进来一个电感和并联了一个电容,于是改进匹配参数,果然阻抗匹配良好。

后期需要做的是将此网络参数和滤波器的七阶低通网络合并。

5 测试图谱

调试完成后,按照1 MHz的间隔测试1.6~29.999 9 MHz,指标基本满足设计要求,限于篇幅,选取其中的一个测试点,对于输出功率和互调指标这两个主要指标的实际测试频谱截图如图5、图6所示,可看出此功放的实际测试情况。

 

上述测试是在输出功率后端串接250 W/30 dB的衰减器,所以频谱仪显示102 mW,互调测试单峰幅度为25.4 mW,即就是峰包功率101.6 W。从以上可看出,此测试点均满足功率放大器的设计指标要求。

6 功放设计注意的问题

6.1 噪声

在设计高增益级联功率放大器时,选用低噪声功放管不但有利于功放的谐波和互调指标,更有利于功放的稳定工作。为了减小噪声,第一级选用低噪声晶体管。末级功率放大器的偏置电源不应有微弱寄生振荡,纹波不能太大,否则会引起功放自激振荡。

6.2 效率

在功放设计中,效率是一个很重要的指标。短波频段的功放效率基本在40%。一方面,效率低,预示着功放输入、输出、级间匹配存在失配,从而将一部分功率耗散在阻抗型元件上,导致发热,甚至损坏器件的正常工作;另一方面,效率低,匹配失衡,驻波比大,极易损坏功放管,造成研发成本的上升,同时大电流的工作状态,使功放处在一种隐性的非安全状态下。在设计高增益级联功率放大器时,为了提高效率,应选用高增益晶体管,尽可能减少晶体管数量,减少功放的级数。该功放的效率在1.6~25 MHz几乎达到了末级输出功放管效率的50%,在同类功放中效率比较高,从而工作状态更可靠。

7 结语

在低压短波功率放大器的设计中,输出满足设计要求的功率和线性度是设计者应予以重视的关键问题,文中对于这个问题具体实现措施进行了探讨,并详细分析了短波功率放大器模块的具体设计过程。通过样机的实测结果证明,文中的论述方法是具体可行的,可供射频功率放大器设计工程师作为参考。

关键字:短波功率  放大器  无线通信 编辑:探路者 引用地址:短波宽带低压功率放大器的设计与实现

上一篇:基于MSP430的直流接地检测系统
下一篇:双反星形整流电路并联运行环流分析

推荐阅读最新更新时间:2023-10-18 16:06

DSL模拟前端中高速运算放大器的应用
随着上网的人数的迅速增长,传统调制解调器、 ISDN 提供的低速和易断线的窄带上网方式开始逐渐遭到用户的摈弃。在各种各样的宽带连网方案中, A DSL 受到了广大网民的青睐。但是,如何选择理想的 ADSL 调制解调器解决方案,是设计工程师所面临的新挑战。   针对这种现状,本文介绍采用 LMH6643 满摆幅输出芯片、 LMH6672 线路 驱动器 及 LMH6622 低噪声 运算放大器 组合实现的方案,该方案具有能充分发挥 ADSL 基带数字信号处理器性能的优点。结构框图参见图 1 所示。   图中数字模拟转换器的输出端可采用在 LMH6643 芯片中的一对放大器作为差分缓冲放大器,提供
[模拟电子]
DSL模拟前端中高速运算<font color='red'>放大器</font>的应用
用差分放大器来驱动高速ADC
当今的世界是一个充斥着海量数据的世界。人们的生活从中获益颇多,但系统设计者面临的压力却日益增大,为模拟数字转换器(ADC)挑选合适的驱动器就是一个重要课题。作为联系现实世界和数据世界重要桥梁的ADC,往往要以数百兆赫兹的频率和高达16位的分辨率来进行采样工作。这样,选择与其相匹配的驱动器来充分发挥其潜力,就变得至关重要。高带宽、高无杂散动态范围、低噪声和低失真度已成为挑选ADC驱动器的重要指标。 差分信号的优点 目前,用来驱动ADC的方案有两种,第一种是使用变压器,第二种则是差分放大器。不过,在介绍差分放大器之前,让我们先来了解一下什么是差分信号。 简单地讲,差分信号就是两个相关信号的差值,本文介绍的是电
[模拟电子]
高性能模拟前端中的运算放大器设计
  高速转换系统,尤其是电信领域的转换系统,允许模数转换器(ADC)输入信号为AC耦合信号(通过利用变压器、电容器或两者的组合)。但对于测试和测量行业而言,前端设计并非如此简单,这是因为除提供AC耦合能力之外,该应用领域通常要求输入信号与DC耦合。设计可提供良好脉冲响应和低失真性能(≥500MHz的DC频率)的有源前端充满挑战。本文就适用于高速数据采集的高性能ADC使用的模拟前端提供几种设计思想和建议。 图1:LMH6703频响。   使用差分放大器是将高频模拟信号与ADC的输入相连的首选方法。因此,需要选择的第一个器件就是差分输出运算放大器。选择这类器件时,主要有两个考虑因素:增益带宽积和从外部电压设置运算放大器的共模输出电
[模拟电子]
高性能模拟前端中的运算<font color='red'>放大器</font>设计
靠世强元件电商也可快速实无线通信模组的射频性能测试
对于许多硬件工程师而言,配置软件而后进行产品性能测试,是有一定难度的,比如最近某公司做得一款无线通信模组,就出现了射频性能测试难的问题。 这款无线通信模组,使用Silicon Labs EFR32系列无线SOC芯片,硬件板子做好后,工程师需要测试EFR32无线模组的射频性能,于是,就需要将相应的测试软件烧录到芯片中,并且这个测试软件需要按照模块设计的射频参数和硬件引脚来设定,例如中心频率,通信速率,控制命令交互使用的uart引脚等。 这时就需要工程师配置一份新的测试代码工程并设定好参数,编译这个工程代码,获得芯片测试使用的hex目标文件。这个属于软件开发范畴,硬件工程师熟悉代码配置和软件调试需要花费较长时间,调试过程会遇到
[测试测量]
靠世强元件电商也可快速实<font color='red'>无线通信</font>模组的射频性能测试
ADI的高速放大器是怎样炼成的
在这个男人当道的电子工程领域,韩凌瑄绝对会让你眼前一亮。这位百分百的美女工程师出现在EEWORLD记者面前时,高挑的身材藏在一件黑白条的无袖连衣裙里,长至脖颈的齐发一方面体现出她的干练,另一方面又传递出那种校园范儿的清新。黑色鱼口高跟鞋里露出暗红色的脚趾甲,但手指甲却保持着裸色,说明她爱美却又不愿张扬。 也许你很难将韩凌瑄和“放大器”或是“工程师”这样的字眼联系在一起,但却必须面对这样一个事实:她已经主导了一款高速放大器的诞生,而且在未来,她还将会成为更多ADI器件的孕育者。 ADI高速放大器市场策略工程师韩凌瑄 韩凌瑄的选择 2003年在美国取得硕士学位后,韩凌瑄就直接进入ADI公司
[模拟电子]
ADI的高速<font color='red'>放大器</font>是怎样炼成的
基于磁放大器的PC电源——ATX电源的设计
1 ATX电源简介     早期PC中的开关电源是AT电源的一统天下。AT电源的输出功率一般为150~250W,共有四路输出(+5V、-5V、+12V、-12V),另外还向主板提供一个电源正常(PG,Power Good)信号。AT电源的缺点是采用切断交流电源的方式关机,不能实现软件关机。目前随着ATX电源的普及,AT电源已淡出市场。     Intel在1997年推出了流行的ATX2.01电源标准。和AT电源相比,ATX电源主要是增加了3.3V输出电压和一个PS-ON信号。其中,3.3V电源给使用低电压的CPU供电,大大降低了主板电路的功耗。5V电源亦称辅助电源,只要插上220V交流电就有5V电压输出。PS-ON信号是主
[电源管理]
LMH6550放大器及ADC12DL065模/数转换器的信号
本文主要介绍输入或接收器路径的设计。发送器或输出路径的设计将会留待以后再详细介绍。典型的接收器或仪表测量系统由信号传感器、模拟信号处理区块、数据转换器、接口及数字处理区块等多个不同环节组成 (参看图 1)。但本文只集中讨论输入路径设计的模拟及混合信号部分。我们必须小心挑选信号路径的各个区块,才可取得预期的成效。      图 1 典型的信号路径   规范系统性能的技术规格   若要系统能充分发挥其性能,系统便必须符合一定的技术规格,例如信号路径所采用的主要元件必须符合有关要求,以便系统可以在性能、功耗、体积及是否容易使用等方面取得最理想的平衡。下文将会分析典型的双信号路径接收器设计的每一个环节 (参
[模拟电子]
LMH6550<font color='red'>放大器</font>及ADC12DL065模/数转换器的信号
Credo推出用于光收发器/AOC的四通道跨阻放大器
超低功耗TIA,配合Credo光DSP芯片及激光驱动器一起,为超大规模数据中心及网络设备OEM提供完整的光芯片组解决方案 加州圣何塞和中国深圳, 2023年9月5日——Credo Technology是一家提供安全、高速连接解决方案的创新企业。 Credo致力于为数据基础设施市场提供其所必需的高能效、高速率解决方案,以满足其不断增长的带宽需求。Credo今日发布新品:4x50G跨阻放大器(TIA)芯片—— Teal 200,该芯片可用于QSFP56/QSFP-DD 光模块及 AOC,适用于AI及超大规模数据中心等具有高容量,低功耗需求的应用场景。Teal 200支持使用50Gbps PAM-4调制的200Gbps SR4/DR
[模拟电子]
Credo推出用于光收发器/AOC的四通道跨阻<font color='red'>放大器</font>
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved