摘要:提出一种Boost、Buck-Boost四端组合升压DC/DC变换拓扑结构;从理论上证明其升压比(增益)是Boost变换器的(1+D)倍。仿真结果表明,该电路具有结构简单、控制方便的优点;并可实现无纹波传递。对于中小功率电源有较好的应用前景。
关键词:Boost变换器升压比Buck-Boost变换器
1引言
BoostDC/DC变换器电路以其固有的升压特性和电路拓扑的简单而受到重视,并得到越来越多的使用。在许多场合都要求在低输入电压的情况下,输出尽可能高的直流电压。传统的BoostDC/DC变换器只具有(D:占空比)的升压比,因此有时不得不采用附加电路的方法来获得更高的升压比[1]。本文提出一种电路结构简单、控制方便的四端组合式升压DC/DC变换器,理论上它具有的升压比。同时,本文对其进行了分析和仿真。
2原理概述
主电路如图1所示,其中负载RO左侧为一BoostDC/DC变换器,右侧为一Buck-BoostDC/DC变换器,因此当电路工作于连续导通模式(CCM)时,
图1
图2
式中:D=Ton/T,见图2,可见与传统的BoostDC/DC变换器相比,本电路具有更高的升压比,且电路是一个四端结构。
3主要参数分析
为了分析方便,作如下假设:①元器件是理想的;②输出电压UO无纹波。在图1所示的主电路中V1、V2代表高频开关管,VD1、VD2是续流二极管。V1、V2的驱动信号相同,电路工作于两种状态:
图3
(1)t0-t1时段。V1、V2同时导通,等效电路如图3所示,这时Ui分别加在L1、L2两端,故iL1、iL2线性上升,电感L1、L2贮存能量,
同时由于开关管V1、V2导通,VD1、VD2受反压而截止,因此C1、C2放电释放能量,给负载提供工作电流,U1(正值)下降,U2(负值)上升。
(2)t1-t2时段。V1、V2同时关断,等效电路如图4所示,这时,由于L1、L2的电流iL1、iL2不能突变,故VD1、VD2导通续流;同时C1、C2分别被充电而贮能,U1(正值)上升、U2(负值)下降。L1、L2释放在Ton期间贮存的能量,所以iL1、iL2线性下降。忽略二极管压降,L1、L2两端分别加有-(U1-Ui)和-U2的电压,
图4
由式(8)及(9)可得输出电压为:即升压比,可见该电路的升压比是传统Boost电路的1+D倍。具体工作波形如图5所示。
图5
(3)零纹波的实现。由图5及图3可知在V1、V2导通期间有下式成立:
UL1=Ui(11)
UL2=Ui(12)
同理,由图5及图4可知在V1、V2关断期间有下式成立:UL1=-(U1-Ui)(13)
UL2=-U2(14)
综合式(11)、(12)、(15)、(16)可知,不论在开关管导通期间,还是截止期间,电感L1、L2上的电压UL1、UL2都相同;因此可以用一个集成耦合电感器代替L1、L2,从而实现零纹波工作。具体推证详见文献[3][4]。
4仿真结果
为了检验理论分析的正确性,应用PSPICE电路仿真软件对电路进行了仿真分析,仿真波形如图6及图7所示。其中Ui=48V、L1=L2=1000μH、C1=C2=100μF、RO=30Ω、开关频率f=20kHz、D=0.7。
图6为负载及电容的电压波形
图7为局部细图。
5结论
本文从理论和仿真两个方面对该电路进行了分析、验证,表明该电路具有可行性。相对于传统的BoostDC/DC变换器而言,该电路具有更大的升压比,可达;并且两个开关管驱动信号一致,不存在死区问题,控制方便。由于负载RO跨接在电容C1、C2两端,因此增大C1、C2的值可明显减小输出电压UO的纹波,从而可免去滤波器的设计,并推证了该电路可实现零纹波输出。所以,该电路可应用于中小功率电源,适用于体积要求比较小的情况,从而实现电源的小型化。
上一篇:正激变换器磁性元件的设计
下一篇:盛群推出HT7A4016电流模式AC-DC/DC-DC通用型电源管理IC
推荐阅读最新更新时间:2023-10-18 16:09
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况