电源设备中常用的四种变换电路

最新更新时间:2011-12-05来源: OFweek半导体照明网关键字:变换器  电源设备 手机看文章 扫描二维码
随时随地手机看文章

DC/DC变换

将一种直流电压变换成另一种(固定或可调的)直流电压称为DC/DC变换(亦称直流变换器)。这种技术被广泛地应用于无轨电车、地铁列车、蓄电池供电的机动车辆的无级变速中,从而获得平稳地加速、减速、快速响应的性能,80年代兴起的电动汽车就是一例。

下面介绍利用自关断器件构成的典型DC/DC变换电路。

最基本的斩波电路如图形3.1所示,斩波器负载为R,当开关S合上时,uo=uR=Ud,并持续t1时间。当开关切断时uo=uR=0,并持续t2时间,T=t1+t2为斩波器的工作周期,斩波器的输出波形见图3.1(b)。若定义斩波器的占空比D=t1/T,则从波形图可以获得输出电压平均值为

 

图3.1降压斩波电路原理
(a)电路(b)波形

 

若忽略开关的损耗,则输入功率Pi应与输出功率相

等,即从直流电源侧看的等效电阻Ri为

Ri=Ud/Ioa=Ud/(DUd/R)=R/D(3.3)

由式3.1可知,当占空比D从零变到1时,输出电压平均值从零变到Ud,其等效电阻也随着D而变化。

t1为斩波器导通时间,T为通断周期,通常斩波器的工作方式有两种:

(1)脉宽调制工作方式:维持T不变,改变t1。

(2)脉频调制工作方式:维持t1不变,改变T。

普遍采用的是脉宽调制方式。因为频率调制方式,容易产生谐波干扰,而且滤波器设计也比较困难。

3.1降压式(Buck)变换器

图3.1所示的直流变换器在使用时输出纹波较大,为降低输出纹波,在输出端接入电感L、电容C滤波电容,如图3.2(a)所示,图中V2为续流二极管。这就是降压(Buck)式变换器,其输出电压平均值Uo总是小于输入电压Ud。通过电感中的电流(iL)是否连续,取决于开关频率、滤波电感L和电容C的数值。

 

图3.2降压式(Buck)变换器
(a)电路(b)波形

当电路工作频率较高,若电感和电容量足够大并为理想元件,电路进入稳态后,可以认为输出电压为常数。当晶体管V1导通时,电感中电流呈线性上升,因而

Ud-Uoa=L(iomax-iomin)/ton=L△ion/ton

式中ton是晶体管导通时间。

当晶体管截止时,电感中电流不能突变,电感上感应电动势使二极管导通,这时

Uoa=L(iomax-iomin)/toff=L△ioff/toff

式中toff为晶体管截止时间。在稳态时△ion=△ioff=△i。

因为电感滤波保持了直流分量,消除了谐波分量。输出电流平均值为

Ioa=(iomax+iomin)/2=Uoa/RL(3.4)

3.2升压式(Boost)变换器

图3.3为升压式变换器,它由功率晶体管V1、储能电感L、二极管V2及滤波电容C组成。当晶体管导通时,电源向电感储能,电感电流增加,感应电动势为左正右负,负载Z由电容C供电。当V1截止时,电感电流减小,感应电动势为左负右正,电感中能量释放,与输入电压顺极性一起经二极管向负载供电,并同时向电容充电。这样把低压直流变换成高压直流。其输出电压平均值将超过电源电压Ud其电路的工作波形如图3.3(c)所示。

在电感电流连续的条件下,电路工作于图3.3(b)所示的两种状态。

 

图3.3升压式(Boost)电路
(a)电路;(b)等效电路;(c)波形

图3.4升/降压式电路
(a)电路;(b)等效电路;(c)波形

(1)当晶体管导通、二极管截止(即0≤t≤t1=DT)期间,t1=0~DT,t=0时刻,V1导通,电感中的电流按直线规律上升

Ud=L(I2-I1)t1=L△I/t1(3.5)

(2)当晶体管由导通变为截止(即t1≤t≤T)期间,电感电流不能突变,产生感应电动势迫使二极管导通,此时

Uoa-Ud=LI/t2,t2=DT~T=(1-D)T

则△I=Udt1/L=(Uoa-Ud)t2/L

将t1=DT,t2=(1-D)T代入上式,则求得

Uoa=Ud/(1-D)(3.6)

式3.6表明,BoostDC/DC变换器是一个升压斩波器。当D从零趋近于1时,Uoa从Ud变到任意大。同理可求得输入电流

I=Ioa/(1-D)(3.7)

T=△ILUo/Ud(Uoa-Ud)(3.8)

△I=Ud(Uoa-Ud)/fLUoa=UdD/fL(3.9)

式中f为开关转换频率。若忽略负载电流脉动,那么[0,t1]期间,电容上泄放的电荷量,反映了电容峰—峰电压脉动量,亦即输出电压uo的脉动量(3.10)

由式3.5和式3.9求得t1=(Uoa-Ud)/Uoaf,并代入式3.10得,见图3.3(c)

△Uc=Ioa(Uoa-Ud)/UoafC=IoaK/fC,

K=(Uoa-Ud)/Uoa(3.11)

3.3升/降压式(Buck-Boost)变换器

图3.4(a)为Buck-Boost电路,这是降压-升压混合电路,其输出电压可以小于输入电压Ud,也可以大于输入电压,而输出电压极性与输入电压相反。其工作波形示于图3.4(c)。

在电感电流iL连续条件下,Buck-Boost电路工作于图3.4(b)所示的两种状态。

经分析推导,可以得出输出电压平均值为

Uoa=-UdD/(1-D)(3.12)

同前面分析一样,可得

Io=IoaD/(1-D)(3.13)

4AC/AC变换

  在需要不同于市电频率或频率可变的交流电源的场合,通常采用AC/AC变换电路。

4.1AC/AC变换的基本原理

图4.1(a)所示为AC/AC变换器的原理电路图。实际上是由正组(P)双半波变流器和负组(N)双半波变流器反并联组成的。正组由V1和V2组成,负组由V3和V4组成。

当正组工作时,分别触发V1和V2使之导通,负载上获得正向电压。而负组工作时,对V3和V4触发使之导通,负载上获得反向电压。现以电阻性负载为例,并假定两组变流器不同时工作。

(1)整半周工作方式

假定输出交流电压的频率(fo)为电源频率(fs)的1/3,即To=3Ts。为此在输出的前半周期内(To/2),让正组变流器工作3个电源电压整半周,在此期间内负组变流器被封锁;然后在输出的后半周期内,让负组变流器导通3个电源整半周,在此期间内正组变流器停止工作,这样可以获得如图4.1(b)所示的波形,其输出电压中的基波分量的频率为电源频率的1/3,即fo=fs/3,以此类推。

按整半周工作方式,输出频率是不能连续可调的,而且输出电压中包含大量的谐波。

(2)α调制工作方式

若每个电源半周期不是整半周期导通,而是控制α不同,让输出电压按理想的正弦进行调制,则能获得如图4.1(c)所示的波形,其输出电压中的基波频率仍然为电源频率的1/3,但其输出波形,比图4.1(b)更接近正弦波,其谐波含量降低。这种工作方式是实际AC/AC变换器所采用的。

(3)高频工作方式

这种工作方式不同于前述的两种,在1个电源电压的半周期内,两组变流器要轮流工作多次,当图4.1(a)的晶闸管用自关断器件代替时,就可以实现这种工作方式,而且要求先封锁已导通的变流器,然后才能使另一组变流器投入工作。若在1个电源电压周期里,以高速率切换两组变流器,使其轮流工作,则能获得如图4.1(d)所示的波形,并称它为高频工作方式。

图4.1AC/AC变换原理电路
(a)电路;(b)整半周方式;
(c)α调制方式;(d)高频方式

4.2α调制工作方式的实现

  现以单相—单相直接变频电路为例说明α调制工作方式的原理及其实现方法。图4.2为单相桥式AC/AC变换电路。为了在负载一获得交变电压,可以交替地让正组变流器和负组变流器轮流工作,并控制α的大小,使得输出电压的平均值按正弦规律变化。在半周期内,先让控制角α由大变小,再由小变大,则输出电压的平均值将按低频正弦的规律变化。

设理想的输出电压为(4.1)

变流器输出电压平均值的基本公式为

uo=(pUm/π)sin(π/p)cosα(4.2)

式中p为脉波个数。变流器输出电压同触发角α之间符合余弦函数关系。图4.2(a),p=2,sin(π/2)=1,则uo=(2Um/π)cosα,将所希望的输出电压波形ur=Ursinω0t同us=(2Um/π)cosωst进行比较,从而求得对应输出电压每瞬时的触发角大小,如图4.2(b)所示的那样,该图对应电阻性负载,两组变流器均工作于整流方式。

为了保证两组中的晶闸管不同时导通,两组之间切换时要留有一定的间隙时间to(大于器件的关断时间),在这期间,两组均不工作。

图4.2α调制工作方式原理
(a)电路;(b)波形

图4.3三相半波/单相
负载AC/AC变换电路

图4.4电阻负载时的电压波形图

4.3AC/AC变换器典型电路

  以三相—单相直接变频电路供给阻性负载为例,图4.3所示为由两组三相半波变流器构成的AC/AC变换器。通常对于电源是市电的AC/AC变换器的输出频率限于电源频率的1/3以下,因为过高的输出频率将带来谐波增加的弊病。改变基准正弦波的频率,就可以改变输出频率。图4.4给出了负载输出电压的波形。

关键字:变换器  电源设备 编辑:探路者 引用地址:电源设备中常用的四种变换电路

上一篇:一种防雷击浪涌的开关电源电路设计
下一篇:从UPS入手四招战败三大僵尸

推荐阅读最新更新时间:2023-10-18 16:11

串-并联补偿式UPS串联变换器研究
  现代工业的发展对电能质量的要求越来越高,如何为电力用户提供安全可靠的  绿色 电源是目前电源领域研究的热点。UPS 作为一种不间断供电设备,是改善电能质量的重要措施之一,也是关键设备得以正常运行的重要保证。目前U PS 的结构有后备式、在线式、三端口在线互动式及双变流器串- 并联补偿式等几种类型。其中双变流器串- 并联补偿式既可以补偿非线性负载中的无功电流及谐波电流,同时还可以补偿电源电压的谐波及基波偏差,具有综合的电能质量调节能力,是最近才出现的一种新型UPS。目前国外A PC 公司有这种实物产品,国内还处于理论研究阶段。   本文介绍了双变流器串- 并联补偿式的工作原理,在此基础上讨论串并联补偿式U PS 串联变换器的
[电源管理]
串-并联补偿式UPS串联<font color='red'>变换器</font>研究
LT1054构成的倍压变换器电路
LT1054构成的倍压变换器电路 LT10LT1054构成的背影变换器电路如图所示,外接两个二极管VD1和VD2,因LT1054本身压降较大,再加上两个二极管压降,输出电压。不能获得精确的倍电压输出,但LT1054工作输入电压范围较宽,适应于高电压输出,可达27V左右。
[电源管理]
LT1054构成的倍压<font color='red'>变换器</font>电路
用于反激变换器中BIMOSFET的相关性能
1 引言 反激变换器一个典型的应用场合是在逆变器中给IGBT的驱动提供辅助电源。此时反激变换器的开关管需要有比较高的击穿电压和快的开关速度。为了降低开关损耗,开通和关段的能量也要小。BIMOSFET的一个主要的优点就是它的开通损耗小,另外它的导通损耗也比较小。把MOSFET和BIMOSFET对比来看,BIMOSFET的损耗大概要小35%左右。 2 反激工作 反激变换器是最简单的变换器之一。其电路中只包括一个开关管,一个变压器,一个二极管和两个电容,如图一所示。变换器的能量储存在铁心的气隙中。开关管导通时,原边电流斜线上升,磁芯储能,关断时通过二极管传送到负载端。反激变换器的最大功率可以做到300W。 这个电路的优点
[电源管理]
用于反激<font color='red'>变换器</font>中BIMOSFET的相关性能
基于DSP控制的PFC变换器的新颖采样算法
摘要:为DSP控制的功率因数校正(PFC)变换器提出了一种新颖的采样算法,它能够很好地消除PFC电路中高频开关动作产生的振荡对数字采样的影响。尤其是当开关频率高于30kHz时,所提出的新颖采样算法能够更好地提高开关抗噪声性能。最后将此算法运用到一台2kW的PFC变换器中,实验结果证明了该算法对于分析、设计和调试所有含开关的数字采样电路均有实用参考价值。 关键词:数字信号处理;功率因数校正;采样算法 引言 数字信号处理器(DSP)已经被广泛应用于通信,智能控制,运动控制等许多领域中。由于具有处理速度快、灵活、精确、可靠等特点,DSP已逐渐取代了传统的模拟控制,例如开关电源中的DC/DC变换器,PFC变换器,以及高频脉宽调制(P
[嵌入式]
雅特生推出两大系列适用于工业设备的隔离式电源转换器
    24款新型号各有不同电压,分别适用于多种不同的高功率密度电子设备。     2014年12月11日 - 中国讯 -- 雅特生科技 (Artesyn Embedded Technologies) 宣布推出两系列适用于高功率密度工业设备、而且大小尺寸只有1 x 2 英寸(25.4mm x 50.8mm) 的全新隔离式直流/直流电源转换器。这两系列型号分别为AEE 40 W 和 AEE 50 W 的电源转换器采用金属外壳,其表面及内部全部经过灌胶以增强保护,另外还有屏蔽,因此最适用于极恶劣的环境,例如,工作温度即使低至-40 摄氏度或高达80摄氏度,电源模块也可正常操作。此外,这两系列电源转换器另有夹扣式散热器可供选用
[电源管理]
雅特生推出两大系列适用于工业<font color='red'>设备</font>的隔离式<font color='red'>电源</font>转换器
输出4A开关频率550KHz的变换器电路
输出4A开关频率550KHz的变换器 LTC1872这一款电流模式升压DC/DC控制器,其工作频率550KHz、输入电压范围2.5V~9.8V、负载电流高达2A。图2 为3.3V 到5V的升压变换器电路。其应用包括1和2节锂离子电池供电的便携装置,如PDA、GPS系统和网络系统用的板级升压变换。 此器件的高工作频率可使电感器和电容器的数值和大小减小,使设计可封装在小于110mm2的面积内。270μA低工作电流、8μA关闭电流和高达90%的效率都有助于延长电池使用寿命。LTC1872保证输出电压精度± 2.5%。输出出电压只受外部元件性能的限制。为避免N-沟MOSFET工作在低于安全输入电压电平之下,该器件具有欠电压锁
[电源管理]
输出4A开关频率550KHz的<font color='red'>变换器</font>电路
同时满足AC和DC性能的放大器分析
现代系统设计师正面对着许多设计挑战,从实现数据转换器的接口到维持其系统与模拟系统接口时的信号保真度等,他们很自然地转向使用运算来解决这些难题。因此,当今的放大器需要满足高难度的技术规范组合。例如,机顶盒和DVD录像机等消费电子视频设备必须具备高带宽,同时需要大输出电流(用于驱动75Ω同轴电缆)、良好的增益精度、低电源电压以及低电源电压下良好的动态范围。   虽然高带宽放大器已经出现几十年了,但是却有着直流特性不良的“恶名”,并且通常工作于双(±)电源轨。这些不良的直流特性限制了放大器所能达到的动态范围。下面的公式为某个放大器的综合动态范围:   动态范围=20Log10(VoutMax/VoutMin)   放大器的
[电源管理]
低电压输入DC/AC变换器模块
    摘要: 介绍在低电压输入下工作的低频交流模块的工作原理、应用范围和技术指标。     关键词: 开关电源  方波  脉宽调制 1 引言 高频开关电源作为一种比较新型的稳压电源具有效率高、体积小、重量轻等优点。因此在国内外电子仪器、仪表及家用电器方面得到广泛应用,其产品发展迅速,市场前景广泛。目前高频开关电源可分为三大类:交流/直流变换器即整流电源,直流/直流变换器即各种高低压直流电源的转换,直流/交流变换器即逆变器、铃流发生器等,其中整流电源和直流变换器市场占有份额相当大,目前主要问题是如何进一步提高效率、减小模块体积和控制保护智能化。逆变器市场占有率较低,而铃流发生器在通信系统和声纳系统中的应用则
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved