为电池充电器开发经济的混合信号充电系统

最新更新时间:2011-12-05来源: chinaaet关键字:电源管理 手机看文章 扫描二维码
随时随地手机看文章

       引言

        随着电池供电的电子设备越来越流行并且功能越来越强大,对电池充电器设计提出了更高的要求。只需采用标准元器件,电池充电器设计就可以同时具有灵活性和质优价廉两方面的优点。混合信号设计能够更方便地为系统增加新的特殊功能。
本文主要讨论两种最常见的化学电池:锂离子电池和镍氢电池。通过本文的讨论,能够设计出一种混合信号通用电池充电器,这种充电器可对这两种电池进行充电。

       电池充电的系统考虑

        要快速可靠地完成电池充电,需要高性能的充电系统。以下系统参数是设计经济可靠的解决方案所必须考虑的。

       输入源

        许多应用都采用廉价的墙式适配器作为输入电源,这种适配器的输出电压高度依赖于变化较大的交流输入电压以及适配器负载电流。

        通过汽车适配器充电也面临同样的问题。汽车适配器的输出电压范围通常为9V~18V。

       输出电压稳压精度

        对于锂离子电池,为使电池容量的利用率达到最大,输出电压稳压精度至关重要。输出电压精度的微小降低都会导致电池容量大幅度减少。当然,出于安全以及可靠性方面的考虑,输出电压并不能无限度提高。图1示意了输出电压稳压精度的重要性。

       充电结束方法

         无论是锂离子电池还是镍氢电池,过充都是致命的弱点。对于安全可靠的充电系统来说,精确的充电结束方法是非常关键的。

       电池温度监控

        可充电电池的充电温度范围通常在0°C~45°C之间,温度超出此范围时,对电池进行充电会导致电池过热。在充电过程中,电池内部的压力升高,因此,电池会膨胀,电池内部的高温和高压会导致电池机械开裂甚至爆炸,或者出现泄露。在0°C~45°C温度范围之外对电池进行充电会损害电池性能,或者缩短其预期寿命。

       电池放电电流或反向漏电流

        在许多应用中,即使输入电源断开,充电系统仍然与电池相连,因此,充电系统必须保证此时电池的漏电流尽可能小。允许的最大漏电流应当小于几个mA,比较理想的情况是低于1mA。 
                        
                                           图1 电池容量损失与充电电压不足的关系

       电池充电器设计

        考虑到前面的系统因素,可以开发出合适的充电管理系统。

       线性解决方案

      当输入源稳压良好时,可以采用线性充电解决方案。Microchip的MCP738xx 线性电池充电器系列就是一个线性充电解决方案的例子。在这些应用中,线性解决方案提供了诸多优点,如易于使用、尺寸小以及低成本。

       开关式充电解决方案

        对于输入电压范围较宽的情况,如无稳压的AC-DC墙式适配器或汽车DC输入,开关式稳压器可以将电池充电器内部的功率损耗降到合理的水平。

       选择拓扑结构

        开关式稳压器拓扑结构决定了稳压器开关和无源滤波元件的构成。这种构成的差异随拓扑结构的选择而变化,从而要在复杂性、效率、噪声以及输出电压范围之间权衡。电源转换器的拓扑结构很多,但只有几种适用于5W~50W范围的电池充电器。

       降压稳压器

        降压稳压器是电池充电应用的一种常用拓扑结构。降压稳压器具有以下优点和缺点:
优点:
1. 复杂性低、单电感结构。
2. 对于同步应用,转换效率可达90%。
缺点:
1.降压稳压器MOSFET开关集成的二极管在没有输入电压时会构成一个电池放电通路。因此需要一个额外的阻断二极管,增加额外器件的同时也导致系统中出现额外的压降。

2. 降压稳压器的输入电流是脉冲式或间歇的。这种拓扑结构在电源的输入端产生较高的电磁干扰(EMI)。大多数降压稳压器都需要额外的输入EMI滤波。

3. 降压稳压器只能对比输入电压低的输出电压进行稳压。有些应用的输入电压范围宽,覆盖到必需的输出电压范围。对于对多节锂离子电池单元组成的电池组进行充电的应用来说,这种情况很常见。

4. 发生降压开关短路故障时,输入至电池之间短路。对于不具备电池内部保护的镍氢电池,就会引发安全问题。

5. 降压稳压器需要高端驱动(对N通道MOSFET开关),与低端拓扑结构相比,这会带来更大的复杂性。

6. 脉宽调制(PWM)控制器应用中的外部开关电流检测比较复杂。对于电池短路或负载短路等故障模式来说,限制开关电流非常重要,没有高速开关电流限制能力,电池充电器在发生短路时会被损坏。

SEPIC(单端初级电感)稳压器

        SEPIC稳压器的拓扑结构在电池充电应用中也比较普遍。与降压稳压器和其它拓扑结构相比,SEPIC稳压器结构具有很多优点,当然也有一些缺点。
优点:
1. 阻断二极管内建于电池系统的拓扑结构中,因此,不需要额外的元件,也不会导致额外的损失。

2. 与降压稳压器的脉冲式输入电流相比,从电源汲取的输入电流是连续的(平滑的)。

3. 输入至输出是隔离的,因此在开关短路时可以保护负载或电池。

4. SEPIC稳压器的拓扑结构具有升压或降压能力。

5. SEPIC开关是低端驱动结构,简化了栅极驱动以及开关中的电流检测。

6. 次级侧电感平均电流等于电池电流,因此检测电流不需要在电池低端串联电阻。
缺点:
1. 需要两个电感或一个耦合电感。

2. 需要一个耦合电容,对于大功率(> 50W),或高电压(VIN > 100V)应用,成本较高。

开关式电池充电器设计

        通过将设计划分为两部分,可以开发出经济的智能电池充电器系统。电池充电器实质上是混合信号系统。例如,电源部分(本例中即SEPIC稳压器)是模拟的。电源以高频开/关,需要某种模拟驱动电路。另一方面,充电结束定时器、故障管理以及开/关控制一般是数字化控制的,需要定时器和可编程能力。

电池充电器技术参数

输入电压:6V~20V
输出电压:0V~4.2V(单节电池), 0V~8.4V(两节电池)
预充电流:200 mA
预充阈值:3V
恒流充电:2A
充电结束阈值:100 mA(触发充电周期结束的电流值)
特性:
过压保护(电池移除)
过流保护(电池或负载短路)
检测电池温度:保证充电安全

策略和方法


        对混合信号的设计采用分两部分的方式,首先选择单片机,用于读取电池组状态(电压和温度),并对SEPIC稳压器输出电流编程,本文选择使用PIC12F6838引脚闪存单片机。

        然后,再选择内置MOSFET驱动器的高速模拟PWM控制器(如MCP1630),组成“模拟”可编程电流源。

设计SEPIC可编程电流源

        与所有开关式稳压器设计一样,输出是通过改变占空比,或开关导通时间的比例(Q1,见图2)来控制的。为稳定流入电池的电流,必须检测充电电流。如图2所示,电流检测元件并没有与电池串联。SEPIC稳压器次级绕组Ls承载平均输出电流。初级绕组Lp承载平均输入电流。次级电阻Rs用来检测电池充电电流。高速模拟PWM参考输入则决定电池充电电流。 
                                   

                                                         图 2 混合信号电池充电器框图

混合信号设计

        利用MCP1630作为模拟PWM和驱动器,可以获得一个可编程的SEPIC电流源。PWM和驱动器提供模拟稳流功能、MOSFET栅极驱动以及高速过流保护。PIC12F683单片机设定SEPIC电源开关频率(500 kHz)并编程设定SEPIC恒定输出电流。
PWM和驱动器利用单片机中的硬件PWM来设定SEPIC开关频率和最大占空比。硬件PWM频率等于SEPIC电源开关频率,同时,硬件PWM占空比确定了最大SEPIC电源占空比。单片机的硬件PWM输出500 kHz,25%占空比的脉冲将SEPIC开关频率设定为500 kHz,最大占空比75%。标准单片机I/O引脚利用简单的RC滤波器生成软件可编程的参考电压。这一可编程的参考电压用来设定SEPIC转换器输出精确恒定的充电电流。

在同相输入(Vref)端,可编程参考电压确定了电池充电电流值。调整MCP1630 PWM输出占空比(Vext),直到Vref输入电压与误差放大器FB输入端电压相等。通过调节Vref 输入引脚的电压就可相应调整电池电流。

        PWM和驱动器能够以大于 500 kHz的频率驱动MOSFET,同时利用一个内部高速(典型值为12ns)比较器来监测SEPIC开关电流。如果开关电流太大,PWM占空比就会为0,从而限制电池电流。

        最后,充电电流还将根据来自ADC的电池电压和温度等信息进行调节。

        要进入恒压充电阶段,单片机的ADC读取电池电压并更新可编程电流源(SEPIC),以保持电池电压为4.2V。这一过程的电池电压变化速率远快于恒流充电时的速率。

        对于锂离子电池,当维持电池电压为4.2V所需要的电流降低到一定值(100mA)时,充电周期结束。这是利用固件设定的,并且可以方便地修改以满足不同电池生产商的推荐值。在典型的模拟充电器中,充电结束电流是充电周期电流的一定比例,因此不容易改变。

        对镍氢电池,快速充电阶段结束时,需要满足下面一个条件或同时满足两个条件:电池电压保持恒定或随着时间下降,或者电池组温度高于预定值。快速充电结束后,就开始进行定时涓流浮充。

        ADC输入和电池组热电偶相配合可以检测电池温度。通过读出“TEMP_SENSE”输入端的电压,可以确定电池温度。

         当检测到电池电压太高时,PIC12F683 中断代码可以提供过压保护(OV)。SEPIC转换器在不到1ms的时间内关断,在电池端接端造成的电压过冲最小。

        SEPIC转换器二极管阻止电池向充电器放电。从电池流出的静态电流只有电池电压检测一个通道,此时的电流大小通常不到5 mA。

可选的特性

        此外,结合一个单片机和多个高速模拟PWM模块还可以增加更多功能,例如针对多组电池充电应用的充电器组,异相开关技术以及输入电源预算功能。

结语

        在开发电池充电器时采用混合信号方式,可以充分发挥模拟和数字两方面的优点。基于混合信号的设计支持高频工作(500kHz)、高速保护(12ns,从电流检测到输出),并可将滤波器件的尺寸缩到最小。此外,系统的可编程数字功能还可以准确判断充电的不同阶段并设定充电电流。

由于可以容易地进行电流设置和编程,因此,通过固件就可以支持新的电池充电方法,这种设计并不仅仅适用于锂离子和镍氢电池,同时还可通过编程支持未来的可充电技术。

关键字:电源管理 编辑:探路者 引用地址:为电池充电器开发经济的混合信号充电系统

上一篇:防止电池过充的控制方法
下一篇:银行UPS系统集中管理方案

推荐阅读最新更新时间:2023-10-18 16:11

element14引进RECOM的最新电源管理解决方案
工程师可以通过最新的“element14专题”获得丰富的设计资源和产品 2011年11月22日,北京——首个融合电子商务与在线社区的电子元件分销商e络盟母公司element14今天宣布开始销售来自RECOM的新电源管理解决方案,包括AC/DC LED电源、微型DC/DC转换器、开关稳压器和AC/DC转换器。 电源管理的核心是了解如何高效地优化每个系统元件的能耗。通过高效地把电源导入系统的各种元件,电源管理解决方案在任何电子产品中都是不可或缺的,可以提高便携式设备的电池寿命。 “我们非常关注客户的需求并推出了品种繁多的转换器产品,很高兴通过element14销售我们的产品。”RECOM亚太区市场经理Cai Yahu
[半导体设计/制造]
Linux2.6内核中的最新电源管理技术综述
  前言   本系列文章将结合近年来不断在各种硬件(包括 CPU、芯片组、PCI Express 等各种最新总线标准以及外设)上新增的节能技术。   从 Linux® 2.6内核及整个 software stack (包括 kernel、middleware 以及各种用户态 utility)如何添加对这些创新的节能技术的支持这一角度,为读者介绍 Linux 操作系统近几年来在电源管理方面所取得的长足进步以及未来的发展方向。   作为本系列文章的开篇之作,首先要向大家介绍的是 cpufreq,它是 Linux 2.6内核为了更好的支持近年来在各款主流CPU 处理器中出现的变频技术而新增的一个内核子系统。    Cpufreq 的由
[电源管理]
Linux2.6内核中的最新<font color='red'>电源管理</font>技术综述
智能手机的电源管理分析
  手机电视、手机游戏以及音频播放等多媒体应用向手机中的电源管理设计提出了巨大的挑战。手机设计人员需要在加入新的多媒体功能的同时,保持手机小巧的外形并维持电池的长寿命。新应用处理器提供了出色的新功能,但代价是功耗更高。新的AV功能意味着音乐回放时间更长,由此音频放大的效率必需更高,从而延长回放时间。而且,当手机上的AV功能变得更成熟时,音频质量和输出功率的要求也会更高。在本文中,我们讨论了一些解决方案,可以帮助设计人员应对这些与新型多媒体手机电源和音频放大有关的挑战。    新应用处理器的电源   为了使手机外形小巧,使用集成电源管理单元(PMU)是非常普遍的。PMU的优点是简化了电源设计,而且与使用几个分立元件电源解决方案相比
[电源管理]
智能手机的<font color='red'>电源管理</font>分析
3G手机的电源管理划分
第三代 (3G) 手机可提供带有更多功能的广泛特性。当消费者从其通信设备上获得最新及更好的功能时,他们还继续要求从一块电池上获得更长的工作时间及更小的外形系数。尽管IC集成可帮助解决设备尺寸问题,但同时也会增加设计复杂性及限制设计灵活性。今天的移动电话设计者必须考虑各种因素,以通过有效优化电池功率使用来延长电池工作时间。因此,必须组合使用多种高集成 电源管理 单元及高性能分立元件来解决电池管理、功率保存及系统管理等问题。 两难选择:功能与电池功率 在设计一种高级无线设备时, 工程师 面临一个基本的两难选择。他们需要将大量功能集成到一个通常由电池与显示屏尺寸、以及用户接口复杂性与设计工效学所决定的给定外形系数中。
[电源管理]
3G手机的<font color='red'>电源管理</font>划分
精通USB 2.0集线器电源管理
  USB集线器不仅可向下游的USB端口提供数据和 电源 ,还允许主机通过软件对连接到下游端口的设备进行电源管理。USB 2.0集线器系统中的电源分配与管理堪称决定系统是否完全符合USB规范(2.0版)的主要因素。   电源分配   所有连接到USB端口的设备可配置成低功率或高功率,这取决于设备的电压和电流要求。   首先将所有USB设备枚举为低功率器件。主机在枚举完成后检查设备配置描述符的bMaxPower字段。如果bMaxPower表明该设备属于高功率,并且可提供相应电源,那么主机会允许将该设备转为高功率。   USB设备可被分为自供电和总线供电。图1给出了这两种集线器配置。   总线供电集线器系统
[嵌入式]
动态电源管理,实现更快速、更高效的电池充电
引言 随着对于新兴便携式设备(例如:平板电脑和智能电话等)需求的快速增长,在如何提高电池供电型系统性能方面出现了许多新的挑战。电池管理系统必须能够智能地支持不同类型的适配器和电池化学成份,并且必须拥有高效的快速充电能力。与此同时,提供良好的用户体验也非常重要,例如:系统瞬间开启、更长的电池使用时间以及快速充电等。本文将讨论如何通过动态电源管理(DPM)实现快速电池充电和提高电池充电性能。DPM帮助避免系统崩溃,并可最大化适配器的可用功率。它可以基于输入电流或者输入电压,或者与电池补充供电模式一起组合使用。本文还会介绍一些延迟电池使用时间的重要设计考虑。 锂离子(Li-Ion)电池对于便携式设备不断增长的电力需求来说是一种理想选择,
[电源管理]
动态<font color='red'>电源管理</font>,实现更快速、更高效的电池充电
STM8 电源管理
默认情况下在系统或电源复位后,MCU处于运行模式。在这种模式下,CPU由fCPU提供时钟并执行程序代码,系统时钟分别为各个处于激活状态的外设提供时钟,MCU功耗最大。 在运行模式下,为了保持CPU继续运行并执行代码,有下列几种途径可降低功率消耗: ● 降低系统时钟 ● 关闭未使用外设的时钟 ● 关闭所有未使用的模拟功能块 但是,如果CPU不需要保持运行,可使用下列三种低功耗模式: ● 等待(Wait) ● 活跃停机(Active Halt)( 可配置为慢速或快速唤醒) ● 停机(Halt) (可配置为慢速或快速唤醒) 用户可选择以上三种模式中的一种,并合理配置,以在最低功
[单片机]
STM8 <font color='red'>电源管理</font>
高集成度蓝牙耳机电源管理方案
引言:随着越来越多的手机支持蓝牙功能,蓝牙耳机已成为手机的必备选件。蓝牙耳机的电源管理设计要求外围组件少,集成度高,同时满足蓝牙芯片对负载响应和噪声抑制的要求。 无线立体声耳机成为2005年的热门产品。随着越来越多的手机支持蓝牙功能,蓝牙耳机已成为手机的必备选件。同时,随着支持MP3播放的立体声蓝牙耳机的推出,蓝牙耳机已能够同时连接到蓝牙移动电话和音乐播放器,这必将给蓝牙应用带来新的亮点。 蓝牙耳机的核心是射频和基带处理两部分,为适应功能的集成和设计的小型化,CSR、Broadcom等公司已将射频和基带处理功能集成在一起,如CSR BlueCore4高集成的蓝牙芯片,封装最小为6%26;#215;6mm。整个耳机的电源
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved