软开关转换器的输出电容设计

最新更新时间:2011-12-14来源: 互联网关键字:软开关  转换器  输出电容 手机看文章 扫描二维码
随时随地手机看文章

过去,许多设计人员都使用粗略假设来提供等效输出电容值,因为输出电容通常都指定为25V漏源电压。不过,传统的等效输出电容值在实际应用中却没有多大帮助,因为它随漏源电压变化,并且在开关导通/关断期间不能提供准确的储能信息。在功率转换器工作电压下,新定义的输出电容提供等效的储能,能够实现更优化的功率转换器设计。

  ZVS转换器的输出电容

  在软开关拓扑中,通过谐振作用,利用电感(漏电感和串联电感或变压器中的磁化电感)中的储能使开关管输出电容放电来实现零电压导通。因此,电感必须精确设计,以防止硬开关引起的附加功耗。下面的公式是零电压开关的基本要求。

  

  其中,Ceq是开关等效输出电容,CTR是变压器寄生电容。

  

  其中,CS是开关等效输出电容。

  公式(1)用于移相全桥拓扑,公式(2)用于LLC谐振半桥拓扑。在两个公式中输出电容都起着重要作用。如果在公式(1)中假设输出电容很大,则由公式将得出较大的电感。然后,此大电感将降低初级di/dt,并降低功率转换器的有效占空比。相反,太小的输出电容将导致较小的电感和有害的硬开关。另外,公式(2)中太大的输出电容将限制磁化电感并引起循环电流的增加。因此,对于优化软开关转换器设计,获取准确的开关输出电容值将非常关键。通常,针对等效输出电容的传统假设倾向于使用较大数值。所以,根据公式(1)或(2)选择电感后,设计人员还需调整功率转换器参数,并经过多次反复设计,因为每个参数都相互关联,例如,匝数比、漏电感、以及有效占空比。而且,功率MOSFET的输出电容将跟随漏源电压变化。在功率转换器工作电压下,提供等效储能的输出电容是这些应用的最佳选择。

  从输出电容中获得储能

  在电压与电荷关系图(图1)上,电容为直线的斜率,电容中的储能为该直线下包含的面积。虽然功率MOSFET的输出电容呈非线性,并依据漏源电压的变化而变化,但是输出电容中的储能仍为非线性电容线下的面积。因此,如果我们能够找出一条直线,由该直线给出的面积与图1所示变化的输出电容曲线所包含的面积相同,则直线的斜率恰好是产生相同储能的等效输出电容。

  图1:等效输出电容的概念。

  对于某些老式平面技术MOSFET,设计人员可能会用曲线拟合来找出等效输出电容。

  于是,储能可由简单积分公式获得。

  

  最后,有效输出电容为:

  

图2(a)显示了输出电容的测量值及由公式(3)得出的拟合曲线。然而,对于具有更多非线性特性的新式超级结MOSFET而言,则简单的指数曲线拟合有时不够好。图2(b)显示了最新技术MOSFET的输出电容测量值及用公式(3)得出的拟合曲线。两者在高压区的差距将导致等效输出电容的巨大差异,因为在积分公式中电压与电容是相乘的。图2(b)中的估计将得出大得多的等效电容,这会误导转换器的初始设计。

  

  图2:输出电容估算:(a)老式MOSFET,(b)新式MOSFET。

  如果依据漏源电压变化的输出电容值可得,则输出电容储能可用公式(4)求出。虽然电容曲线显示在数据表中,但要想从图表中精确读出电容值并不容易。因此,依据漏源电压变化的输出电容储能将由最新功率MOSFET数据表中的图表给出。通过图3显示的曲线,使用公式(5)可以得到期望的直流总线电压下的等效输出电容。

  

  图3:输出电容中的储能。

  输出电容的常见问题

  在许多情况下,开关电源设计人员会对MOSFET电容温度系数提出疑问,因为功率MOSFET通常工作在高温下。总的来说,可以认为MOSFET电容对于温度而言始终恒定。MOSFET电容由耗尽长度、掺杂浓度、沟道宽度和硅介电常数所决定,但所有这些因素都不会随温度而产生较大变化。而且MOSFET开关特性如开关损耗或开/关转换速度也不会随温度而产生较大变化,因为MOSFET是多数载流子器件,因而开关特性主要是由其电容决定。当温度上升时,等效串联栅极电阻会有略微增加。这会使MOSFET在高温下的开关速度稍许降低。图4显示了根据温度变化的电容。温度变化超过150度时,电容值的变化也不超过1%。

  

  图4:MOSFET电容与温度的关系。

设计人员感兴趣的另一个地方是MOSFET电容的测试条件。大多数情况下,输出电容在1MHz频率和Vgs为0V的条件下测量。事实上存在着栅漏间电容、栅源间电容及漏源间电容。但实际上却不可能单独测量每一电容。因此,栅漏间电容和漏源间电容之和总称为输出电容,通过并联两个电容来测量。为使它们并联,将栅极与源极短接在一起,即Vgs=0V。在开关应用中,当MOSFET在栅极加偏置电压而导通时,输出电容通过MOSFET沟道而短路。仅当MOSFET关断时,输出电容值才值得考虑。关于频率,如图5所示,低压下的输出电容在低频时稍有增加。低频时,因为测试设备的限制,有时无法测量低漏源电压下的电容。图5中,当漏源电压小于4V时,100kHz时的电容将无法测出。虽然输出电容存在微小变化,但是等效输出电容却几乎恒定,因为低压下的输出电容微小变化不会对储能产生如图3所示那样大的影响。

  

  图5:MOSFET电容与频率的关系。

  本文小结

  输出电容是软开关转换器设计的重要部分。设计人员必须慎重考虑等效电容值,而不是将其固定为漏源电压下的单一数值。

关键字:软开关  转换器  输出电容 编辑:冰封 引用地址:软开关转换器的输出电容设计

上一篇:纤巧的 1.5W 隔离式低噪声 DC/DC µModule 转换器
下一篇:如何廉价地制作了110伏至12伏的电源转换器

推荐阅读最新更新时间:2023-10-18 16:14

MAX1169 16位逐次逼近型模数转换器(ADC)
MAX1169是一款低功耗、16位、逐次逼近型模数转换器(ADC),具有自动关断功能、片上4MHz时钟、+4.096V内部基准以及可以工作在快速和高速模式下的I²C兼容2线串行接口。   MAX1169采用单电源供电,在58.6ksps最高转换速率下功耗为5mW。AutoShutdown™在两次转换之间将器件关断,在1ksps吞吐率时电源电流减小至50µA以内。可选的独立数字供电电压允许与+2.7V至+5.5V数字逻辑直接接口。   MAX1169使用内部4MHz时钟对单路模拟输入进行单极性转换。满量程模拟输入范围由内部基准或外部提供的1V至AVDD基准电压决定。   四个地址选择输入端(ADD0至ADD3)允许
[模拟电子]
MAX1169 16位逐次逼近型模数<font color='red'>转换器</font>(ADC)
让传感器匹配转换器还是让转换器匹配传感器?
就模拟转换器系统而言,您会选择的初始设计方法可能是查看需要的精度,然后使用一个能够获得相应精度的 ADC。为了达到要求的准确度或精度,需要给系统加装一些必要的增益模块,以便让有效模拟范围覆盖 ADC 的动态范围。 但是,我们还可以选择另一种方法。您可以使用一个 24 位转换器来消除增益模块及其产生的补偿、漂移和噪声(您会在 12 位到 16 位系统中找到他们)。24 位转换器是一款更为简单的解决方案。另外,您还可以在相同或者更低成本的情况下获得更高的性能。 您或许可以只使用 24 位 ADC 范围的一部分便能够完成设计。是的,没错,您可能会去掉一些位!在这种情况下,您仍然能够达到或者提高原始 12 或 16 位系统的分
[工业控制]
让传感器匹配<font color='red'>转换器</font>还是让<font color='red'>转换器</font>匹配传感器?
电感电流断续时Boost升压式PWM DC/DC转换器的工作原理和基本关系
  如图(c)给出了电感电流断续时Boost升压式PWM DC/DC转换器的主要工作波形,此时Boost升压器PWM DC/DC转换器有以下3种开关模式。   (1)开关管V导通,电感电流iLf由零增加到最大值ILf max;   (2)开关管V关断,二极管D续流,电感电流iLf从ILf max降到零;   (3)开关管V和二极管D都关断(截止),在此期间电感电流iLf保持为零,负载由输出滤波电容Cf来供电。直到下一个周期开关管V开通后iLf又增长。   这3种开关模式的等效电路如图所示。   在开关管V导通期间,电感电流iLf从零开始增加,其增加量△iLf为:   开关管V关断后,电感电流iLf线性
[电源管理]
电感电流断续时Boost升压式PWM DC/DC<font color='red'>转换器</font>的工作原理和基本关系
Altera DC-DC电源转换器系统功效提高35%
Altera公司发布四款新参考设计,这些设计采用了通过收购Enpirion而获得的 电源 技术。参考设计为FPGA用户和电路板开发人员提供了全包电源解决方案,与竞争电源解决方案相比,功效提高35%,电路板面积减小50%,总材料(BOM)体电容成本降低了50%。Altera 电源优化 参考设计以可下载设计包的形式提供给客户,在Altera开发套件硬件中进行了演示。现在可以下载面向Cyclone V SoC的设计包,本季度末还会提供面向28 nm FPGA的其他设计包。 Altera电源优化参考设计采用了Enpirion PowerSoC DC-DC转换器,在很小的高效散热封装中包括了集成控制器、高频功率FET和电感。对超小型高
[电源管理]
数字40A PoL - 高效且配置简便
数字40A PoL - 高效且配置简便 • 单面直插封装(SIP)或水平安装 • 6 – 15 V输入电压 • 0.6 – 5 V输出电压 • 最多并联4个单元 • 提供PMBus®接口 Flex Power Modules宣布推出使用节省空间的单面直插封装(SIP)或水平安装的 BMR473数字负载点(PoL)转换器 。该产品的额定连续电流为40 A,最多可4单元并联达到160 A,具有同步和相位扩展功能以将电磁干扰(EMI)降至最低。拥有出色的散热性能、定制的电感器设计和高达 96.1% 的效率水平,允许在自然对流条件 下最高85°C (12 V 输入/2.5 V 输出)满载工作,适当风冷与降额条件
[工业控制]
数字40A PoL - 高效且配置简便
关于提升LED背光系统的中压升压转换器效率分析
低电压范围升压转换器通常用于 移动 设备,以便将电池电压(1.2V 至4.2V)提升到较高的电压水平(如1.5至20V),从而为应用电路供电。在这个电压范围里,传导损耗是主要的考虑因素。市面上存在许多专门设计用于这些应用的器件,连续传导模式(CCM)是这些器件的主要工作模式。   高电压范围升压转换器通常用作具有90V至270V AC输入和约400V DC输出的PFC转换器,在这些应用中,传导损耗并不像在低电压升压转换器中那么重要,需要更多地考虑 开关 损耗和抗噪声能力。因而PFC 控制器 通常采用某些特别的设计要素如临界导通 (CRM)工作模式、更高的电流感测电压。PFC控制器由于市场巨大而被广泛使用。   
[电源管理]
关于提升LED背光系统的中压升压<font color='red'>转换器</font>效率分析
反激式变换器输出电容的计算
以反激式变换器的实例为大家讲解关于输出端电容的计算,此实例为RCC拓扑结构,输出功率6W,输出电压5V,输出电压1.2A。在最小输入电压下,占空比为0.5,工作频率100KHz。(为了数据简单取频率为整数)   原理分析:   第一:在反激式(RCC拓扑结构)中,输出端的电容是用来存储能量的。当开关管导通时,输出端电容给负责供电。那么我们可以从电容的储能入手。   第二:在AC-DC的电源模块中我们一般使用电解电容做储能器件的,不仅仅要从电容的储能来入手,那还要从电容的EMR入手来计算。   第一种方案:   1、电容的供电纹波电流   在输出电容的正极有三个电流:一个是输出绕组供电的电流
[电源管理]
反激式变换器<font color='red'>输出</font>端<font color='red'>电容</font>的计算
一种带辅助变压器的Flyback变换器ZVS软开关实现方案
摘要:提出了一种新颖的FLYBACK变换器ZVS软开关实现方案。一个较小的辅助变压器与主变压器串联,通过使辅助变压器原边激磁电感电流双向来达到主开关管的ZVS软开关条件。该方案实现了主辅开关管的ZVS软开关,限制了输出整流二极管关断时的di/dt,并且使变换器在任何负载情况下,都能在宽输入范围内实现软开关。 关键词:ZVS软开关;辅助变压器;电流双向 引言 在很多通讯和计算机系统中,需要使用高功率密度、高效率的开关电源。提高开关频率可以减小电感、电容等元件的体积,是目前开关电源提高功率密度的一种趋势。但是,开关频率的提高,开关器件的损耗也随之增加。 图1 为了减小开关电源的开关损耗,提高其开关频率,软开关技术应运而生
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved