引言
变频节能技术原理:一般电气拖动设备设计上考虑有短时过载运行的情况,在电动机的功率配置上往往要大于负载最大功率的l0%左右,甚至更大一些。
1 问题的提出
轧钢区水处理中心是新余钢铁有限责任公司二期技改的一部分,主要负责处理并供给中厚板厂和线材,一所需的浊环水和净环水。中厚板厂浊环水系统是24 h不间断运行供水,运行以来,由于经常换辊以及生产工艺要求的不同,造成用水量不稳定,导致冷水池水位时高时低,运行不稳定、不安全且常溢流造成资源浪费、环境污染。为此,须通过频繁操作回流阀及开、停泵来调整水池水位。经统计,2006年6~8月,平均每天调整回流至少18次,启停泵至少3次。泵机频繁工频启动缩短了电动机的使用寿命,工频启动时的电流冲击,管网压力冲击,瞬停时的水锤效应造成设备故障率高,检修频繁,维修成本增高。电动机工频运行所消耗的电能很大一部分被用于系统打回流,做无用功,电耗增多。原系统为一开环系统,只起到机泵开车、停车作用,不能自动调节。操作人员监控难度大,需时时监控,稍不注意就会影响水位调整。另外,水位波动大,液位计选型不当,电脑显示不能如实地反映现场情况,操作人员必须经常到现场查看,既不能及时准确地提供调整数据,使得调整滞后,又增加了工作量。
2 系统改造方案的设计及确定
2.1 选型
现运行方式为除油泵房1号~4号泵供中厚板浊环冷水池用水,根据生产需要,决定增加1台变频装置实行变频改造,采用“一拖二”形式,即1套变频装置能够互换拖动2台水泵电动机,用于除油泵房3号和4号泵电动机,这样1台变频运行,另1台备用,机组检修不影响变频系统的工作。所选电动机型号均为Y2—3l5M一4(380 V 132 kW 240 A),变频装置选用施耐德Telemecanique公司的Altivar38节能型变频器,功率132 kW。它符合IEC、UL和CSA等标准,具有调速范围宽,加减速制动性能好自适应调整和节能以及电源过压、电动机缺相、电动机过热、变频器过热等保护功能。
变频调速器(简称VVVF)给定有多种方式,在这里采用变频器面板PI给定和液位计检测的电流反馈,通过对内部参数的设置形成PID调节的闭环自动控制系统。
2.2 控制回路
2台水泵电动机的原控制回路均保留作为新控制系统的工频旁路,由变频柜上的工频/变频选择转换开关确定。2台水泵电机工变频之间以及相互变频之间都有电气连锁,避免误操作。电气控制回路线路见图1。
由于原工频主回路采用了长沙奥托型号为QB4200的交流电动机软启动器,为了保证改造后不影响工频的顺利启动,必须将变频器电动机主回路输出接线端接自软起动器的输出端,见图2。
2.4 操作方式
本系统的操作可实现变频面板/主控室/现场三地控制,三者都可控制水泵电机的启动与停止。变频面板控制还可实现速度调节、参数设定及系统运行情况的LED显示,主要方便调试。主控室控制即为PLC远程控制,正常情况下的操作方式,方便操作人员控制。现场控制是在电机旁设有一个操作箱,主要方便工作人员就地观察水泵及电机检修后的重启,以及在事故情况下的停机。
2.5 监控系统
原工频已采用PLC控制,选用Siemens的S7—300型PLC及梯形图可视化编程语言的STEP7专用软件,处理来自电控柜及现场操作箱的接触器、软启动器,选择开关等电气元器件的大量开关量信号,现场各仪表变送器采集的电机电流、水池水位高度等4~20 mA的电流信号。然后计算判断对执行器件进行控制,上位机通过Pe Adaptm’(MPI)与PI C连接互通信息,对现场各设备进行监控。WinCC(视窗控制中心)是Siemens公司推出的上位机控制系统软件,采用WinCC6.0组态软件编写上位机的监控画面,建立监控画面的PLC内存数据与实时数据库的连接,从而使系统的管理和维护非常方便。增加变频装置后,原PLC系统和监控画面基本不变,但在此基础上加以完善。增加了工频/变频转换选择的开关量输入,一则在对话框中显示工作方式状态,二则增加软接点在通过程序的稍加修改,以其输出来控制微型继电器,利用微型继电器的辅助电接点增加工变频的电气互锁,确保可靠性。
2.6 水位模拟量采集
原中厚板浊环冷水池水位4~20mA的模拟电流信号采集,是通过安装在水池顶部的超声波液位计检测经变送器转换而得。由于水池水位波动太大,浊环水温使得水池内水汽较大,浊环水水质存在一定的腐蚀性,原液位计使用效果不佳,在此次变频改造中解决这一问题迫在眉睫。经多方考虑,选用上海康创公司生产的型号为UQC一50,量程为5 m且防腐能力强的磁浮子液位计。其基本原理是磁耦合及阿基米德浮力定理,当水池内液位升降时,其主导管内磁性浮子也随之升降,通过磁耦合驱动指示器内磁珠翻转,同时磁浮子也带动LB捆绑式液位变送器和MCU一1/CK一1液位控制器工作。通过实践证明磁浮子液位计使用效果好,很适合中厚板浊环冷水池的工况环境,并且增加了水池现场显示。另外,为减少电磁干扰对该信号的影响,采用ZRK—VVRP 2X1.5阻燃屏蔽信号电缆,并在PLC模拟量输人板AI板前增加了1个一分二隔离器,一路给电脑显示用,一路提供给变频器反馈信号用。
3 变频改造效果
1)节约电费。变频改造后,电动机运行电流约为14OA,频率为40Hz左右,运行稳定,波动很小;改造前电动机运行电流为240 A,频率为50 Hz,两相比较,每年可节约电费38万元左右。
2)降低设备维修费。变频改造后,由原平均每天调整回流18次,降为现在每天开回流2次;原平均每天启停泵3次,降为现在每月1次。变频启停过程中对电动机、水泵、电网、电气元件的冲击降至最低,每年因设备故障率的大幅度下降而节省的维修费约1万余元。
3)社会效益。变频改造后使得中厚板浊环冷水池水位已稳定,确保了供水,既做到了少补水,提高浊环水循环率,又、避免了水资源的浪费,而且不外排,保护了环境。
4 结语
变频泵投用至今,运行良好,性能稳定,节能效果非常明显,不但经济效益显著,而且社会效益良好。
上一篇:如何廉价地制作了110伏至12伏的电源转换器
下一篇:耦合电感 SEPIC 转换器的优势
推荐阅读最新更新时间:2023-10-18 16:14
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况