3 设备电源变压器的基本要求
一个合格的变压器不需要有很小的漏感,换言之,变压器的漏感越小越好。这是因为对变压器的要求是输出波形不失真,即输入什么波形输出也必须是什么波形,输出只是幅度的改变,而形状决不能改变。要达到这一目的,就必须要求变压器的工作模式是线性的。这一点非常重要,原因是UPS有一个非常重要的指标,那就是输出电压的动态性能。UPS是一个电压源,也就是稳压源。稳压源的特点是电流变化时电压不变,对UPS来说在其能力范围内负载电流无论如何变化,电压都是稳定的。图1示出了工频机型UPS的原理框图。
图1 工频机UPS的原理方框图
具体来说,UPS的输出端在变压器的后面,也就是说变压器后面的负载电流不论如何变化,其输出电压都不许变化,这就是对动态性能的要求。如何实现这个性能呢?
图2 作为电压源的UPS和输出端负载关系原理图
通过对图2关系的计算就可以找出实现动态性能的途径。图2中点划线方框代表的是UPS,E是逆变器输出的电压,r是包括变压器在内的UPS内阻抗,R是负载电阻,I是负载电流,U是负载端电压。由此可以看出:
4 变压器其他功能剖析
(1) 变压器可缓冲负载电流的突然变化剖析
众所周知,IT负载电流是随机变化的,这种变化是根据其工作量的大小来决定的。往往有这样的情况,机房内设备在正常工作时,比如从UPS的LCD上显示负载量是70%,这是很让人放心的良好情况。但即使这样,也有转旁路的情况。什么原因呢?UPS转旁路有几种原因:过载、短路和逆变器故障。显然既不是逆变器故障也不是短路,就只有一种可能:短时间过载。为什么会过载呢?不是才有70%的负载量吗?这就是当代负载的特点,那70%的负载量是平时的平均功率,就是说机房中众多机器工作量不均衡,有的大有的小,所以平均下来70%,如图3所示。但有时候几乎所有的机器在同一时间都工作在最大负载状态,这时即出现了电流峰值。这个峰值有时甚至很大,持续时间也许数毫秒、也许几秒,其值之大不是UPS承担得了的,就只好切换到旁路。
图3表示的是UPS输出电压和电流关系原理图,上面的电压不论任何时间都应该是基本稳定的,这就是有好的动态性能。有人说变压器可以缓冲负载的电流突变(包括短路故障),现在就用图3来分析。在正常情况下,电流的变化都不太大,根据上述的讨论,一旦机房内几乎所有设备都同时工作在最大负荷,比如在t1需要一个很大的脉冲电流I1,按照有些人的说法,变压器要缓冲。所谓缓冲:在时间上缓就是不马上提供,到t2才给出,在幅度上缓就是不给那么大的电流I1,只提供较小的I2。举例说,IT在t1需要5kW的峰值功率,变压器给缓冲成在t2才给出3kW的峰值功率,请问,在这种情况下IT是什么反应?罢工!这是其一。
图3 UPS输出电压和电流关系原理图
其二,在电源上限制电流的办法就是降低电压,如图3所示。为了减小电流就使变压器上的压降变大,如图中对应电流的电压下冲。这个下冲就是反电势,这就犯了电源的大忌:要想有这么大的反电势,就必须有这么大的电感量。变压器成了电感,线性环节变成了非线性环节,这已经不是变压器了!这样的所谓变压器在电路
中是会使波形失真的,而在实际机器中波形没有失真,就说明漏感很小,甚至几乎为零。所以这些人的分析是没有根据的,是强加给变压器的,设计者本来就不是这个意思。有对变压器防浪涌电流者作了这样的比喻:变压器就好比海边上的防波堤,一个浪打来,它就能抵挡一下。可惜变压器不是防波堤,而是平滑的沙滩。
从式(2)可以看出,如果UPS的内阻r等于零,那么括号内的值就是1,就可以实现U=E ,这就是一台合格的UPS。在这里需要注意的是,负载电流I不是稳定的直流电流,而是随机变化的脉冲电流,也就是说存在变化率。如果在电源通往负载的线路上有电感L存在,在负载电流变化时就会有反电势e 。这个反电势就取决于负载电流的变化率,即:
这时就有U=E - e,照样造成输出电压的不稳定,即动态性能不好的结果。也就是说电感是阻碍电流变化的,是脉冲电流的大敌。所以,在电源通往负载的线路中不允许有任何电感存在。最可能有电感的环节就是变压器,所以在绕制变压器时最怕有漏感,漏感越小变压器的质量越高。那些说变压器可以抗干扰者的根据恐怕就是基于变压器的电感,变压器没有了电感还靠什么抗干扰?
(2) UPS的输出变压器所在位置起到抗干扰作用剖析
用图4对这个观点进行分析。图中的箭头指向就是两个UPS的输出端,众所周知,在用户的标书中都明确规定:UPS输出电压失真要小于3%~5%,就是说,如果达不到这个指标就有失败的危险。实际中,两类UPS都达到了这个指标,但值得注意的是工频机型UPS有变压器而高频机型UPS没有变压器,从图中可以看出,UPS输出有没有变压器的结果是一样的。为什么呢?众所周知,UPS逆变器不是干扰发生器,其输出波形是很正规的,并没有所谓的干扰,用不着去抗。那么输出端是不是有干扰反馈过来呢?我们用图5进行讨论。
图4 两种机型UPS的输出电路比较
图5 UPS输出到负载的馈电关系
图5点划线方框的后面是连接负载的电缆W,电缆的末端是脉冲负载RL。要知道电缆本身是有阻抗ZW的,其值的大小可用式(4)表示
式中:
ZW ——导线在长度l时的阻抗;
l——导线W的长度;
S——导线W的截面积;
XL——导线W的自感阻抗,且XLµ l ;
r——导线W的电阻率。
因此,当负载电流IL通过时就会有压降,其大小如下式所示:
URZw=IL ZW (5)
这样一来,负载端的电压UL就是从UPS输出电压UUPS减去线路压降ILZW,可用下式表示:
UL=UUPS-ILZW (6)
从图中可以看出,在脉冲负载电流IL通过时,线路压降ILZW随着导线的长度延长而增大,在负载端最大,这就使负载端出现电压波形失真的原因。
同样从图中也可以看出,供电线路是以UPS输出端A、B为起点的,很明显在这一点的线路长度l=0,所以线路压降ILZW=0,此点的电压
UL=UUPS-ILZW=UUPS
换言之,负载脉冲电流在线路上形成的压降根本就反馈不到UPS输出端来,那么变压器在这里也就没有所谓抗“干扰”的任务。从众多实际用户机房测试中完全证明了这一点,这里面既有工频机型UPS也有高频机型UPS。由此证明,所谓工频机型UPS输出变压器在这里抗干扰是虚晃一枪。当然会有人说,你讲的不对,我们的那台UPS输出端就有波形失真。这能说明什么问题呢?只能说明两个问题:
① 你的那台UPS输出动态不好;
② 更说明那个变压器没有起啥作用。
既然变压器两端都没有干扰,那么UPS输出端的滤波器是起什么作用的呢?因为UPS逆变器输出的是脉宽调制波,这个滤波器是做解调用的,把正弦波解调出来送到输出。这和变压器没有关系。
(3) 实际经验证明变压器能抗干扰剖析
我们的发电机容量没有问题,后面是6脉冲整流的UPS,但是由于6脉冲整流器的作用出现了干扰,发电机带不了UPS,后来就到工厂随便绕了个1:1的变压器,接上以后,发电机就可以带UPS了,这不是把干扰给抗了吗!这的确是个好例子,好就好在发电机可以带UPS了。但其抗干扰作用的机制是变压器的漏感,可以说这个变压器的漏感很大,是个不合格的变压器,如果用在UPS输出就会导致波形失真。实际上在这种情况下不必那么费事,在发电机和UPS之间接个滤波器就可以了,既省钱又省地方,还省力。
5 结束语
通过对工频机型UP S的输出变压器可以缓冲负载的电流突变,可以起到抗干扰作用的讨论知道,该变压器没有这么多的作用。因此,对于没有输出变压器的高频机型UPS,在稳压功能方面不会受到影响。■
上一篇:国内变压器有新突破
下一篇:利用变压器实现电子镇流器的局部整流效应保护功能
推荐阅读最新更新时间:2023-10-18 16:14
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
- AMD推出第二代Versal Premium系列产品:首款PCIe 6.0和CXL 3.1的SoC FPGA
- 红帽宣布达成收购Neural Magic的最终协议
- 5G网速比4G快但感知差!邬贺铨:6G标准制定应重视用户需求
- SEMI报告:2024年第三季度全球硅晶圆出货量增长6%
- OpenAI呼吁建立“北美人工智能联盟” 好与中国竞争
- 传OpenAI即将推出新款智能体 能为用户自动执行任务
- 尼得科智动率先推出两轮车用电动离合器ECU
- ASML在2024 年投资者日会议上就市场机遇提供最新看法
- AMD将裁员4%,以在人工智能芯片领域争取更强的市场地位
- Arm:以高效计算平台为核心,内外协力共筑可持续未来