蓄电池持续监测保证不间断电源(UPS)可以随时启用

最新更新时间:2011-12-25来源: 互联网关键字:失效  Sentinel  持续监测  阻抗 手机看文章 扫描二维码
随时随地手机看文章

 1 前言

    越来越依赖技术为我们提供安全感:相机、应急电话甚至安全照明都给人可靠的感觉,让我们明白,如果需要,可以随时使用它们。确保紧急情况下的可用性依赖于不出差错的电源,这相应意味着高品质的备用电池。但是,如何知道备用电池真的不出差错呢?

    这个问题困扰着依赖电池提供应急电源的设备制造商。如何知道在最需要的时候,它能够发挥作用,这对于不间断电源(UPS)制造商尤其重要,因为UPS的唯一用途是在主电源发生故障时确保计算机系统或医疗设备的电力供应。在这些情况下,电力提供和在确定的时间与供给容差范围内供电是极其必要的。

    大多数备用电池使用多个阀控铅酸蓄电池(VRLA)做成整体电池组。虽然称作“免维护”,但这项技术有众所周知的不足,其中的任何一个都可能造成电池低效甚至完全不起作用。

    因此,弱、老化或其他“不健康”的电池构成这些系统的严重危险,需要定期维护检查它们的健康状态(SOH)与荷电状态(SOC)。不论这些维护多么频繁,在维护检查间隙仍有发生电池故障的风险。为了克服这种状况,一些公司正转向提供持续原位SOH和SOC监测的系统。

    2  持续监测

    持续监测似乎是个简单的解决办法,但在现实中面临经济上的难题。持续监测方案通常需要增加50%的电池成本,如果把安装和运行考虑在内,增加比例甚至高达70%。面对这么高的成本,在提示电池寿命终结的平均无故障时间(MTBF)之前定期更换电池,可能是更经济的做法。然而,和例行维护一样,这也充满不确定性,因为环境条件对电池的MTBF有很大影响。

    制造商因而把目光转向低成本的持续监测系统,全面诊断电池在各个条件下的SOH和SOC。2007年3月,供应这类智能变送器的专业公司LEM与密封及排气式铅酸电池诊断和管理领域领先的权威机构RWTH亚琛大学合作,确立了先进的低成本电池监测管理的发展方向。

    在其他制造商追逐更“时尚”的电池技术时,RWTH亚琛大学则已建立起技术中心并增强其力量,集中研究最为成熟和普遍销售的电池化学工艺。LEM-亚琛结成长期合作关系,共同研究VRLA富液和胶体电池的故障模式,开发包括SOH和SOC在内的下一代监测与分析系统。

    通过这种合作和了解用户需要,LEM持续开发用于持续监测的“Sentinel”解决方案,终于研制出最新一代产品Sentinel III。Sentinel能够测量电池电压、内部温度和内部阻抗,其诊断测量水准可媲美高度复杂且昂贵的实验设备,但成本因素使其可用作持续监测方案。

    为了开发Sentinel,如图1所示,LEM使用上述实验设备并选用众多的电池样品和品牌,进行广泛的研发。在这个项目中,Sentinel运用和复制了电化学阻抗频谱分析法。在解释高性价比的单芯片解决方案中如何复制这项先进技术之前,值得我们确切说明的是它实现的诊断水准以及如何保护基于电池的UPS的完整性。

    图1   用于评估监测装置的测试设置

    3  老化问题

    这类系统大多采用铅酸电池技术,众所周知的技术缺陷是老化导致容量衰减,内阻升高。不过,由于这项技术如此成熟,老化状况也广为人知,因而能够通过探测几种情况确定老化状况。

    容量降低是尤其普遍的影响之一,这基本是电池的使用模式造成的。在UPS内部,电池以高电流放电,导致电极上生成大的晶体。可通过适当调节电池,部分地控制这种状况,但事实证明在严重情况下这是不可逆的。这种情况也会生成小的晶体,称作“树枝晶”,如果没有探测到的话,可能会连在一起造成电池短路。

    内部腐蚀使端子的薄片落到电极上,也可能造成短路。导致腐蚀的重要因素包括温度、电压和局部酸液浓度,通常影响正极端子。这些老化效应都导致电池容量或电量损失,因此任何一种诊断都必须能够鉴别它们,以便在灾难性故障发生之前采取适当行动。

    以上效应导致电池容量或电量降低。任何一类诊断都应当以鉴别这些老化效应为目标。

    在已进行的测试中,使用电化学阻抗谱(RWTH亚琛大学的EISmeter分析仪)进行全谱测量,运用一系列的正弦波形测量电池,测得整个频谱的阻抗。通过傅立叶分析计算给定频率的实际和假想的电压响应部分,得出测量结果。通过分析电压响应与励磁电流的幅角及相角关系,获得复杂的阻抗结果。

    对于Sentinel解决方案而言,这是不切实际的,因为做到这一点所需的处理能力会使持续监测系统的任何解决方案失去商业可行性。因此,我们面临的挑战是开发这样一种方法:只能使用一种频率进行测量,但能获得堪比EISmeter的结果。

    4  趋势分析

    测量结果显示,用EISmeter和用Sentinel测得的两个数值非常一致。虽然使用Sentinel反馈的数值稍高,但这容易通过校准予以补偿。但是,基于电池诊断的目的,对于重要性来说,这种偏差是相对而非绝对的。由于测量是持续进行的,因此,重要的是从结果中清楚看出趋势数据。这些数据加上均采用单一集成电路测得的温度和电压值,构成Sentinel解决方案的信息基础。

    Sentinel是第一个用于监测VRLA和富液电池的单块集成电路(系统芯片),能够测量单个电池和整个电池的内部温度、电压和标准阻抗。每个Sentinel III模块监测标称电压在0.9V到16V之间的单个电池或电池组,通过S-BUS总线的通讯总线向S-BOX的数据记录器报告数据。

    Sentinel的功能是取得测试的关键电气参数,以确定电池能否在主电源发生故障时发挥作用。

    单个串行总线最多可以接入250个而最多设定为六组的Sentinel模块,最多可监测六条浮动/放电电流,使安装变得极其轻松,只需使用预设端子的数据总线电缆将插头插入插座即可。

    每个Sentinel都有温度测量工具,持续测量直接固定在电池盒上的传感器片探测到的单个电芯的外表温度。这对于探测潜在的热失控来说是不可或缺的,也使智能温控测量单个电池温度,使绘制电池温度分布成为可能。在此之前,这还是一项费用昂贵的附加服务。

   LEM独一无二的真实能量层阻抗测量法以及更强大耐久的测试电流,确保每次测得的结果准确且可重复。采用设定频率通过对整个电池进行多次“短时微放电”测量阻抗,阻抗与频率的关系如图2所示。

    图2 阻抗与频率的关系

    图3 阻抗波形                              

    图4 Sentinel III

    起初,这个单一的较长预处理脉冲动作在开始绘制测量脉冲之前,把电芯带入正确的“能量层”状态。后者生成不同的电芯电压响应,结合脉冲电流参照值,提供阻抗值。

    Sentinel的阻抗测试方法只涉及所测试的电芯。不需要通过电池部件的高电流,并且内阻测量过程不干扰直流线路。

    这是首次在单芯或整个电池监测中综合测量温度、阻抗和电压。Sentinel III(外形见图4)系统能够准确测量温度(误差+/- 2°C,测量范围为 –10°C to +70°C)、放电(动态)(+/-0.5%)和浮动(静态)电压及纹波电流,是目前在售的最全面的电池监测系统。

    另外在设计上,Sentinel III安装简单,花费的时间约为安装其他系统所需时间的四分之一。这是通过单片电路设计和简化通讯系统实现的。各独立单元采用LEM 的 S-BUS总线的专有通讯总线,独立运行,却由S-BOX的中央智能单元直接控制。监控器和数据记录器有全面的警报参数和数据存储装置(见图5)。

    图5  S-BOX、监控器和电池数据记录器

    正是详细的测量加上智能化的数据分析,才能提供关于真实电池状况和可用性的可靠报告。Sentinel III提供电芯或整个电池的准确温度、电压和阻抗数据。中央数据记录与分析单元的软件跟踪一定时间的数据变化情况,提取趋势信息,随时向用户提供备用电池投入使用后的真实性能。在单个电芯或整个电池层面,系统鉴别出故障的电池组件,针对完全失效生成警报,并请求进行人工检验。由于S-BOX盒也接入网络服务器,可通过互联网查看所有的性能、趋势和警报数据;以标准信息形式提供非紧急状态更新数据,使管理员可从世界任何地方监测装置。

    由于Sentinel本身由受监测的电池供电,因此设计上在多数时间维持“睡眠”模式,只在进行测量时才“唤醒”。唤醒周期用时不足100ms,大约每(5-10) min唤醒一次。鉴于Sentinel III分散内部电阻的测试载荷电流,为减小内部温度上升,阻抗测量周期的最短时间为10 min。与电池参数变化的时间相比,这个间隔很短,实践中许多操作员会要求延长阻抗测量周期的间隔。因此,在绝大多数时间里,Sentinel消耗极少的主电池电量。

    考虑到对复杂电子装置依赖程度的日益加深,UPS系统可能更多地使用铅酸电池。单个电芯发生故障可能引发采用UPS作为应急电源的系统灾难。但是,使用LEM的Sentinel可以预测、防止系统灾难的发生,从而在间接损害发生之前,提早进行高性价比的校正。

    LEM坚信,持续监测对这些应用有重要意义,但它的成本不应超过电池成本的15%。因为我们已经知道,大多数故障模式中是阻抗发生了变化,所以,迄今为止这是探测电池失效退化的最有效方法。为了获得真实的读数,必须在足以穿透当前“表面”负荷的电流水平上测试电池,为此开发的Sentinel也能自动优化阻抗信号测试水平。

    5  结语

    Sentinel系统是完全自动运行的单芯片解决方案,为安全和关键应用提供性价比极高的可靠监测手段。整个系统的运行可基于单个电芯的完整性。但是,Sentinel能够保持这种完整性,从而避免潜在的灾难性故障。

关键字:失效  Sentinel  持续监测  阻抗 编辑:冰封 引用地址:蓄电池持续监测保证不间断电源(UPS)可以随时启用

上一篇:一种新型高线性度采样开关的设计
下一篇:48V总线的路灯电路解决方案及原理介绍

推荐阅读最新更新时间:2023-10-18 16:16

示波器探头对信号源阻抗的影响
  根据阻抗的相对值,在测试点中增加探头和示波器导致各种负荷效应。   信号源阻抗的值可能会明显影响探头负荷的净效应。例如,在信号源阻抗低时,很难注意得到典型高阻抗10X探头的负荷效应。这是因为与低阻抗并联增加的高阻抗不会明显改变总阻抗   4.1.在测试点(TP)上测量的信号可以通过信号源和相关的负荷阻抗表示(a)。探测测试点在信号源负荷上增加了探头和示波器阻抗,导致测量系统吸收部分电流(b)   4.2.信号源阻抗越高,探测导致的负荷越大。在这种情况下,所有阻抗都相等,探测导致测试点上的信号幅度下降了30%以上   但是,在更高的信号源阻抗时,情况发生明显变化。对相等的Z值,在没有把探头和示波器连接到测试点时,信号
[测试测量]
示波器探头对信号源<font color='red'>阻抗</font>的影响
穿戴式系统中的生物阻抗电路设计挑战
可穿戴生命体征监护(VSM)设备正在改变着医疗保健行业,使我们随时随地都可以监护自己的生命体征和活动。与这些重要参数其中一些最相关的信息都可通过测量人体阻抗来获得。   为了有效运行,可穿戴设备必须做到尺寸小、成本低且功耗低。此外,测量生物阻抗还面临着与使用干电极及安全要求相关的挑战。本文针对这些问题提出了一些解决方案。 电极半电池电位   电极是一种电气传感器,可在电子电路和非金属物体(如人体皮肤)之间建立接触。这种相互作用会产生一个电压,称为半电池电位,它可降低ADC 的动态范围。半电池电位因电极材料而异,如表1所示。    电极极化   当无电流通过电极时,可观察到半电池电
[医疗电子]
穿戴式系统中的生物<font color='red'>阻抗</font>电路设计挑战
阻抗微弱信号测量的保护电路设计
空气质量检测、光电信号探测、加速度计、压电传感器以及生物体信号等高阻抗信号测量,易受到来自测量系统输入电阻、输入偏置电流的影响,实际测量系统中主要有与信号路径相并联的元器件如电阻、电容的分流,电缆泄漏电流和印刷电路板寄生漏电流的影响。因此,高阻抗微弱信号测量电路,必须经过精心设计以满足系统对低偏置电流、低噪声和高增益的要求。 1 高阻抗信号测量原理与影响因数分析 高阻抗信号测量,易受到测量系统输入阻抗的分压与系统输入偏置电流的影响。如图l所示,将被测高阻抗信号源与测量系统相连,信号源的戴维宁等效电路由Vs与Rs串联而成。假定测量系统的等效输入电阻为Rin,输入端电压为Vin,由于Rs与Rin的分压,使得输入端电压减小
[测试测量]
高<font color='red'>阻抗</font>微弱信号测量的保护电路设计
IC智能卡失效的机理研究
IC智能卡作为信息时代的新型高技术存储产品,具有容量大、保密性强以及携带方便等优点,被广泛应用于社会生活的各个领域。通常所说的IC卡,是把含有非挥发存储单元NVM或集成有微控制器MCU等的IC芯片嵌装于塑料基片而成,主要包括塑料基片(有或没有磁条)、接触面、IC芯片3个部分。传统的IC卡制作工序为:对测试、信息写入后的硅晶圆片进行减薄、划片,分离成小芯片,再经装片、引线键合、包封等工序制成IC卡模块,最后嵌入IC卡塑料基板。   随着IC产品制造工艺的提高以及高性能LSI的涌现,IC智能卡不断向功能多样化、智能化的方向发展,以满足人们对方便、迅捷的追求。然而使用过程中出现的密码校验错误、数据丢失、数据写入出错、乱码、全“0”全“F
[模拟电子]
IC智能卡<font color='red'>失效</font>的机理研究
【实例剖析】如何应对LED封装失效
在用到 LED 灯的时候最怕的就是LED灯不亮,这个时候不要责怪环境,不正确的安装方法、保护措施和过高电源是导致灯不亮的重要原因。当然很多时候也是人为因素。这里结合8大实例来剖析如何应对 LED封装 失效?    死灯不亮,不要责怪环境,不正确的安装方法、保护措施和过高电源是导致灯不亮的重要原因。   1、 LED散热 不好导致固晶胶老化,层脱,芯片脱落   预防措施:焊接时防止LED悬浮,倾斜。做好LED散热工作,保证LED的散热通道顺畅。   2、过电流过电压冲击导致驱动,芯片烧毁,灯具处于开路或短路状态   预防措施:做好EOS防护,防止电流和电压大于灯具的电流和电压冲击或者长时间驱动LED。   3、过电流冲击,烧断金线
[电源管理]
一文详细了解TH2851系列阻抗分析仪
TH2851系列阻抗分析仪是常州同惠电子采用当前先进的自动平衡电桥原理研制成功的新一代阻抗测试仪器,为国产阻抗测试仪器的最新高度。 TH2851系列阻抗分析仪彻底颠覆了传统国产仪器复杂繁琐的操作界面,基于Windows10操作系统,实现了全电脑化操作界面,让测试更智能、更简便。 TH2851系列阻抗分析仪也彻底超越了国外同类仪器120MHz的频率瓶颈;解决了国外同类仪器只能分析、无法单独测试的缺陷;中英文操作界面也解决了国外仪器仅有英文界面的尴尬;采用单测和分析两种界面,让测试更简单。 快达2.5ms的测试速度、及高达100MΩ的阻抗测试范围可以满足元件与材料的测量要求,特别有利于低损耗(D)电容器和高品质因数(Q)电
[测试测量]
一文详细了解TH2851系列<font color='red'>阻抗</font>分析仪
电桥法测量阻抗方法
电桥法又称指零法,它利用拾零电路作测量的指示器,工作频率很宽。其优点是能在很大程度上消除或削弱系统误差的影响,精度很高,可达到10-4。 1、电桥的平衡条件 | zx|~|z4|——复数阻抗zx、z2、z3、z4的模;φx~φ4——复数阻抗zx、z2、z3、z4的阻抗角。 当被测元件为电阻元件时,取zx=rx,z2=r2,z3=r3,z4=r4,有 2、直流电桥与交流电桥 (1)直流双臂电桥 当电桥达到平衡时,ip=0,c、d两点电位相等,此时 r1-r4为桥臂电阻,阻值很小,一般不超过0。5ω。如果能在制造电桥时,使r2=r3,r1=r4并精心同步调整,满足r2r3=r1r4则被测电阻为 (2)使用凯尔文电桥应注意
[测试测量]
电桥法测量<font color='red'>阻抗</font>方法
RFID中的射频天线的选择与配置
在RF装置中,工作频率增加到微波区域的时候,天线与标签芯片之间的匹配问题变得更加严峻。天线的目标是传输最大的能量进出标签芯片。这需要仔细的设计天线和自由空间以及其相连的标签芯片的匹配。本文考虑的频带是435MHz, 2.45 GHz 和 5.8 GHz,在零售商品中使用。 在RF装置中,工作频率增加到微波区域的时候,天线与标签芯片之间的匹配问题变得更加严峻。天线的目标是传输最大的能量进出标签芯片。这需要仔细的设计天线和自由空间以及其相连的标签芯片的匹配。本文考虑的频带是435MHz, 2.45 GHz 和 5.8 GHz,在零售商品中使用。 天线必须满足的条件: 足够的小以至于能够贴到需要的物品上; 有全向
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved