开关电源的可靠性设计方案

最新更新时间:2012-01-04来源: 互联网关键字:开关电源  可靠性  电磁兼容 手机看文章 扫描二维码
随时随地手机看文章

摘要:对影响开关电源可靠性的几个方面作出较为详细的分析比较,从工程实际出发提出提高开关电源可靠性的方案。 
关键词:开关电源;可靠性;电磁兼容

引言

电子产品的质量是技术性和可靠性两方面的综合。电源作为一个电子系统中重要的部件,其可靠性决定了整个系统的可靠性,开关电源由于体积小,效率高而在各个领域得到广泛应用,如何提高它的可靠性是电力电子技术的一个重要方面.

1 开关电源电气可靠性工程设计技术

1.1 供电方式的选择

供电方式一般分为:集中式供电系统和分布式供电。现代电力电子系统一般采用采用分布式供电系统,以满足高可靠性设备的要求。

1.2 电路拓扑的选择

开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。其中双管正激式、双正激式和半桥电路的开关管承压仅为输入电源电压,60%降额时选用600 V的开关管比较容易,而且不会出现单向偏磁饱和的问题,这三种拓扑在高压输入电路中得到广泛的应用。

1 .3 功率因数校正技术

开关电源的谐波电流污染电网,干扰了其它共网设备,还可能会使采用三相四线制的中线电流过大,引发事故,解决途径之一是采用具有功率因素校正技术的开关电源。

1.4 控制策略的选择

在中小功率的电源中,电流型PWM控制是大量采用的方法,在 DC-DC变换器中输出纹波可以控制在10 mV,优于电压型控制的常规电源。

硬开关技术因开关损耗的限制,开关频率一般在350 kHz以下;软开关技术是使开关器件在零电压或零电流状态下开关,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,此技术主要应用于大功率系统,小功率系统中较少见。

1.5 元器件的选用

因为元器件直接决定了电源的可靠性,所以元器件的选用是非常重要。元器件的失效主要集中在以下四点:制造质量问题、器件可靠性的问题、设计问题、损耗问题。在使用中应对此予以足够重视。

1.6 保护电路

为使电源能在各种恶劣环境下可靠地工作,应在设计时加入多种保护电路,如防浪涌冲击、过欠压、过载、短路、过热等保护电路。

2 电磁兼容性(EMC)设计技术

开关电源多采用脉冲宽度调制(PWM)技术,脉冲波形呈矩形,其上升沿与下降 沿包含大量的谐波成分,另外输出整流管的反向恢复也会产生电磁干扰(EMI),这是影响可靠性的不利因素,这使得系统具有电磁兼容性成为重要问题。 
如图1所示,产生电磁干扰有三个必要条件:干扰源、传输介质、敏感接收单元,EMC设计就是破坏这三个条件中的一个。

对于开关电源而言,主要是抑制干扰源,干扰源集中在开关电路与输出整流电路。采用的技术包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等技术。

3 电源设备可靠性热设计技术

统计资料表明电子元器件温度每升高2 ℃,可靠性下降10 %;温升50 ℃时的寿命只有温升25 ℃时的1/6。除了电应力之外,温度是影响设备可靠性最重要的因素。这就需要在技术上采取措施限制机箱及元器件的温升,这就是热设计。热设计的原则,一是减少发热量,即选用更优的控制方式和技术,如移相控制技术、同步整流技术等技术,另外就是选用低功耗的器件,减少发热器件的数目,加大粗印制线的宽度,提高电源的效率。二是加强散热,即利用传导、辐射、对流技术将热量转移,这包括散热器设计、风冷(自然对流和强迫风冷)设计、液冷(水、油)设计、热电致冷设计、热管设计等。

强迫风冷的散热量比自然冷却大十倍以上,但是要增加风机、风机电源、联锁装置等,在设计中要根据实际情况选取散热方式。

4 安全性设计技术

对于电源而言,安全性历来被确定为最重要的性能,不安全的产品不但不能完成规定的功能,而且还有可能发生严重事故,甚至造成机毁人亡的巨大损失。为保证产品具有相当高的安全性,必须进行安全性设计。电源产品安全性设计的内容包括防止电危险、过热危险。

对于商用设备市场,具有代表性的安全标准有UL、CSA、VDE等,内容因用途而异,容许泄漏电流在0.5~5mA之间,我国用军标准GJB1412规定的泄漏电流小于5 mA。电源设备对地泄漏电流的大小取决于EMI滤波器的Y电容的容量,如图二所示。从EMI滤波器角度出发Y电容的容量越大越好,但从安全性角度出发Y电容的容量越小越好,Y电容的容量根据安全标准来决定。根据GJB151A,50 Hz设备小于0.1 μF,400Hz设备小于0.02 μF。若X电容器的安全性能欠佳,电网瞬态尖峰出现时可能被击穿,它的击穿不危及人身安全,但会使滤波器丧失滤波功能。

5 三防设计技术

三防设计是指防潮设计、防盐雾设计和防霉菌设计。凡应用我国长江以南、沿海地区以及军用电源均应进行三防设计。

电子设备的表面在潮湿的海洋大气中会吸附一层很薄的湿水层,即水膜,但水膜达到20~30分子层厚时,就形成化学腐蚀所必须的电解质膜,这种富含盐分的电解质对裸露的金属表面具有很强的腐蚀活性。另外温度突变,在空气中产生露点,会使印制线间绝缘电阻下降、元器件发霉,产生铜绿、引脚被腐蚀断裂等情况。

湿热环境为霉菌的滋生提供了有利条件。霉菌以电子设备中的有机物为养料,吸附水分并分泌有机酸,破坏绝缘,引发短路,加速金属腐蚀。

在工程上,可以选用耐蚀材料,再通过镀、涂或化学处理即通过对电子设备及零部件的表现覆盖一屋金属或非金属保护膜,使之与周围介质隔离,从而达到防护的目的。在结构上采用密封或半密封形式来隔绝外部不利环境。对印制板及组件表现涂覆专用三防清漆可以有效避免导线之间的电晕、击穿,提高电源的可靠性。变压器应进行浸漆,端封,以防潮气进入引发短路事故。

三防设计与电磁屏蔽往往是矛盾的。如果三防设计优异就具有良好的电气绝缘性,而电气绝缘的外壳就没有好的屏蔽效果,这两方面需综合考虑。在整机设计中,应充分考虑屏蔽与接地要求,采取合理的工艺,保证有电接触的表面长期导通。

6 抗振性设计技术

振动也是造成电源故障的一个重要原因。在振动试验中常发生钽电容和铝电解电容器引线被振断情况,这些就要求加固设计。一般可以用硅胶固定钽电容,给高度超过25cm和直径超过12cm的铝电解电容器加装固定夹,给印制板加装肋条。

7 结束语

以上建议只是适用于工业品和军品电源,对于商业级产品可以在某些方面作出不同的选择。总之电源设备可靠性的高低,不仅跟电气设计,而且跟装配、工艺、结构设计、加工质量等各方面有关。可靠性是以设计为基础,在实际工程应用上,还应通过各种试验取得反馈数据来完善设计,进一步提高电源的可靠性。<--

关键字:开关电源  可靠性  电磁兼容 编辑:冰封 引用地址:开关电源的可靠性设计方案

上一篇:DSP电源系统的低功耗设计
下一篇:基于单片机的数控电流源设计

推荐阅读最新更新时间:2023-10-18 16:18

VIPer53设计的12V/3A 的副边反馈的开关电源电路
如图是一个应用VIPer53设计的12V/3A 的副边反馈的开关电源,其输入电压范为 85~265Vac,电源的工作频率是60kHz。 线性光电耦合器 Opto1、可调精密电压基准源TL431 和C8 组成一个一阶控制的负反馈 闭环系统。通过电阻R7 和R8 构成的输出电压采样电路,将电压信号与TL431 内部2.5V 的 电压基准进行比较而形成的误差电压来改变 Opto1 中的LED 流过的电流,即控制光接受三 极管的开度来使VIPer53 发出脉宽控制信号,调节VIPer53 的输出占空比范围使用输出电压 保持不变,最终达到稳压的作用。
[电源管理]
VIPer53设计的12V/3A 的副边反馈的<font color='red'>开关电源</font>电路
基于89C51单片机的开关电源优化设计
引言 开关电源是利用现代电力电子技术控制功率开关管(MOSFET,IGBT)开通和关断的时间比率来稳定输出电压的一种新型稳压电源。从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。利用单片机控制的开关电源,可使开关电源具备更加完善的功能,智能化进一步提高,便于实时监控。其功能主要包括对运行中的开关电源进行检测、自动显示电源状态;可以通过按键进行编程控制;可以进行故障自诊断,对电源功率部分实现自动监测;可以对电源进行过压、过流保护;可以对电池充放电进行实时控制。 开关电源的系统结构 通信用-48V开关电源
[单片机]
基于89C51单片机的<font color='red'>开关电源</font>优化设计
如何提高低成本开关电源的效率?
  低电流开关稳压器IC通常使用达灵顿管作为输出开关。在这种情况下,电源转换效率可以借由两个便宜的元器件得到提高。   为使之成为可能,芯片上应当有一个针对驱动器晶体管Q1集电极的单独引脚(图1)。在启动时,D1针对Q1的集电极电流形成一条通路。此后,D1和C1形成一个电流累加整流器,增加Q1的集电极电压和电流,从而降低闭合开关Q2上的电压降。        图1:为了实现用两个元器件提升电源转换效率,芯片上应有针对驱动器晶体管Q1集电极的单独引脚。   该电路的另一优点是能在输入电压较低的情况下工作。由于驱动器集电极上的电压有所上升,电路可支持更宽的输入范围。   C1的值取决于开关频率。一般情况下,数值范围为47nF~150
[电源管理]
如何提高低成本<font color='red'>开关电源</font>的效率?
奥地利微电子高可靠性位置传感器IC为最新主动底盘控制系统提供准确的位置数据
中国,2014年2月18日——全球领先的高性能模拟IC及传感器供应商奥地利微电子公司(SIX股票代码:AMS)推出的高可靠性无触点磁性位置传感器技术在汽车行业备受认可。 全球领先的汽车供应商大陆集团(Continental)正以奥地利微电子的磁性位置传感器AS5162为基础,推出其新型CPS系列底盘高度传感器。 AS5162只需与一个简单的双极磁铁配合使用,便可准确地检测角位移,每个循环过程的精确度高达0.09°。由于采用了非接触式半导体技术,AS5162可免受杂散磁场的干扰。此外,与其他光学传感器及接触式位置传感器不同,AS5162不受石油、油脂、灰尘等污染物的影响。 大陆集团的CPS底盘高度传
[汽车电子]
奥地利微电子高<font color='red'>可靠性</font>位置传感器IC为最新主动底盘控制系统提供准确的位置数据
高效率70W通用开关电源模块
TOPSwitch-GX 适合制作成本、高效率、小尺寸、全密封式开关电源模块或电源适配器。由TOP249Y构成的密封式70W通用开关电源模块,电路如图所示。当环境温度不超过40度时,模块的外形尺寸可减小到10.5CM*5.6CM*2.5CM。设计的交流输入电压范围是85V~265V,这属于全世界通用的电源范围。该电源同时实现输入欠电压保护、过电压保护、从外部设定极限电流、降低最大占空比等功能,其主要技术指标为:额定输出功率PO=70;负载调整率SR=正负4%;电源效率N大于或等于84%(当交流输入电压U=85V时,满载效率可达85%;当U=230V时,电源效率高达90%);U=230V时的空载功率损耗 0.52W;输出纹波电压
[电源管理]
高效率70W通用<font color='red'>开关电源</font>模块
解决开关电源电磁干扰问题的方案
引言 近年来,开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。但是,由于开关电源工作过程中的高频率、高di/dt和高dv/dt使得电磁干扰问题非常突出,国内已经以新的3C认证取代了CCIB和CCEE认证,使得对开关电源在电磁兼容方面的要求更加详细和严格。如今,如何降低甚至消除开关电源的EMI问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的问题。本文讨论了开关电源电磁干扰形成的原因以及常用的EMI抑制方法。 开关电源的干扰源分析 开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt和高dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。工频整流滤波使用的大电容充电放电、开关管高频
[电源管理]
解决<font color='red'>开关电源</font>电磁干扰问题的方案
低压差线性稳压器在开关电源中解决方案
电源是各种电子设备必不可缺少的组成部分,其性能的优劣直接关系到电子设备的技术指标及能否安全可靠地工作。目前常用的直流稳压电源分线性电源和开关电源两大类,由于开关电源内部关键元器件工作在高频开关状态,本身消耗的能量很低,开关电源效率可达80%~90%,比普通线性稳压电源提高近一倍,目前已成为稳压电源的主流产品。 开关稳压电源的结构 开关稳压电源的原理图及等效原理框图,它是由全波整流器,开关管Vi,激励信号,续流二极管VD,储能电感和滤波电容C组成。实际上,开关稳压电源的核心部分是一个直流变压器。这里我们对直流变换器和逆变器作如下解释。逆变器,它是把直流转变为交流的装置。逆变器通常被广泛地应用在采用电平或电池组成的备用电源中。直流变
[电源管理]
开关电源的EMC设计
开关电源因体积小、功率因数较大等优点,在通信、控制、计算机等领域应用广泛。但由于会产生电磁干扰,其进一步的应用受到一定程度上的限制。本文将分析开关电源电磁干扰的各种产生机理,并在其基础之上,提出开关电源的电磁兼容设计方法。 开关电源的电磁干扰分析 开关电源的结构如图1所示。首先将工频交流整流为直流,再逆变为高频,最后再经整流滤波电路输出,得到稳定的直流电压。电路设计及布局不合理、机械振动、接地不良等都会形成内部电磁干扰。同时,变压器的漏感和输出二极管的反向恢复电流造成的尖峰,也是潜在的强干扰源。    图1 AC/DC开关电源基本框图 1 内部干扰源 ● 开关电路 开关电路主要由开关管和高
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved