在线式UPS的控制与保护功能基本上是由中央处理器(CPU)或数字信号处理器(DSP)内部程序控制完成的,由于程序的不可见性,UPS的许多控制和保护原理用户很难理解。以下根据多年的UPS研发经验,讨论一下在线式UPS的控制和保护技术。
控制技术
(1)缓开机
当UPS开机或系统重置(包括过载解除、自动重启等)时,CPU控制UPS缓慢提升逆变电压,每32ms提升逆变电压3V,直至220V停止。
(2)电压追逐
在缓开机结束后,逆变电压尚未切换到对外输出前,为防止市电灌入UPS,在市电正常时,CPU控制逆变电压追逐市电输入电压,逆变电压依市电电压高低每隔128ms加减3V。如果市电电压高于280V,则只追到280V;如果市电电压低于160V,则只追到160V。
(3)市电电压的侦测与控制
CPU每16ms读取一次市电电压值,当市电电压的读值连续低于160V或高于280V五次时,视为市电电压输入异常;只有当市电电压的读值连续五次恢复到170~270V之间时,才认为市电输入转为正常。市电输入正常时,UPS工作在市电逆变状态;当市电电压低于160V或高于280V时,UPS立即转入电池逆变状态;为防止市电来回切换,只有当市电恢复到170~270V时, UPS才转入市电逆变状态。
(4)市电频率的侦测与控制
侦测市电频率的目的是作为逆变锁相的依据,通过调整逆变的过零点调整逆变相位,使在市电状态下的逆变输出与市电输入基本同频率、同相位。市电开机时,UPS侦测输入市电的频率作为逆变输出的频率;电池状态下开机时,逆变输出的频率以上次输出的频率来设定。当市电正常时,执行锁相,逆变频率先追市电频率,频率相同后再追踪相位,通过变动逆变频率完成逆变和市电同相位。锁相后,逆变和市电的相位差小于3度,频率误差小于0.01Hz。当市电频率超出47~53Hz范围时,UPS不执行锁相,立即转入电池逆变状态,只有当市电频率回复到48~52Hz时,UPS再执行锁相,并转入市电逆变状态。
(5)三角波发生器
CPU送出的38.4kHz方波,经由运算放大器组成的二分频电路后,变成19.2kHz的方波,再经积分器积分成三角波。
(6)标准正弦波发生器
CPU送出以128点平均分割的模仿正弦波,经过二阶低通滤波器滤波后,生成标准正弦波。
(7)PWM信号
标准正弦波与逆变输出电压的正弦波反馈信号进行比较,其结果被三角波切割,生成PWM信号。
(8)逆变电压调整
CPU每16ms读取一次逆变电压值,并与设定的电压值进行比较,当差值高于10V时,CPU立即调整标准正弦波,从而调整PWM信号,使输出电压相应加减5V,以缩小差值;当差值低于10V时,CPU累积差值,当累积值达到30V时,CPU调整标准正弦波,使输出电压相应加减2V。
(9)CPU的A/D读取
CPU每半周期读一次电池电压、正负BUS电压和机内温度,每隔8个标准正弦波点读一次市电电压、逆变电压和逆变电流(在每个周期开始,CPU变更读点的初始位置,使每隔8个标准正弦波点读一次,通过128个点的A/D读取达到扫描效果,读取值存入RAM内)。
(10)CPU的计算
CPU每隔2个周期计算一次市电电压的均方根值(RMS),每隔1个周期计算一次逆变电压的均方根值,每隔32个周期计算一次逆变电流的均方根值,每隔32个周期计算一次输出功率的均方根值。
保护技术
(1)逆变输出短路和过电压保护
当逆变输出电压的正弦波反馈信号连续64ms无过零信号时,视为逆变输出短路,UPS关闭输出并报警;当逆变输出电压值连续80ms低于160V或高于280V时,视为逆变输出过电压,UPS立即转到旁路并报警。
(2)输出限流保护
保护电路侦测逆变输出的电流值,当其超过额定值的3.6倍时,限流保护电路立即关闭PWM,只有在输出电流值小于额定值的3.6倍后,PWM才重新工作。
(3)BUS过电压保护
当BUS电压的绝对值连续64ms超过440V时,UPS实施BUS过电压保护,转入旁路并报警。
(4)电池过压和欠压保护
当每个电池电压高于15V时,视为电池过压,UPS自动转入电池逆变状态,在每个单体电池电压下降到13.5V后,UPS重新回到原工作状态。市电异常,UPS转入电池逆变状态,电池开始放电,CPU控制蜂鸣器4s鸣叫一次。当每个单体电池电压下降到10V时,UPS自动关机。市电恢复正常时,UPS会自动重启。
(5)负载保护
如果UPS在从旁路转入逆变输出前,侦测到负载超过110%,UPS不能转入逆变输出,CPU控制蜂鸣器每0.5s鸣叫一次;如果开机后负载加至110%~130%,CPU控制蜂鸣器每0.5s鸣叫一次,UPS在10s后转入旁路;如果开机后负载加至130%以上,UPS会立即转入旁路。
虽然UPS种类繁多,但是其控制和保护技术的基本原理大致相同。
上一篇:数字技术应用于功率转换及管理的数字控制
下一篇:检测开关设计特点及优点分析
推荐阅读最新更新时间:2023-10-18 16:19
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况