UOUT=1V的DC/DC变换器发展趋势

最新更新时间:2012-01-15来源: 互联网关键字:便携系统  DC/DC  变换器 手机看文章 扫描二维码
随时随地手机看文章

    1简介

    为了以更低的功耗获得更高的速度和更佳的性能,半导体器件正在向1V工作电压发展,这也对DC/DC变换器提出了更高的要求。由于便携产品将率先采用1V工作电压,因而对电源效率和功率密度的挑战显得更为严峻。除了需要增添更多的功能外,还需要延长电池的使用寿命,并缩小系统体积。随着便携系统内部功能的增多,如更高的内存,更快的处理速度,因特网访问带宽更高,对电源的要求也相应提高。电源效率的改善则意味着新一代便携系统需要承受指数级增长的电流,系统体积小,散热能力差,更容易产生过热。因此系统散热成为令人关注的问题。在UOUT=1V的电压下维持较高的电效率是非常困难的。如果输入和输出电压之间的差值增加,更难获得高性能。为此,必须找到适合高性能、小体积、长时间运行便携系统的方案。

    笔记本电脑就是要求低工作电压的便携系统之一。这些系统的核心CPU的DC/DC应用系统要求Uin=21V和UOUT=1.3V,输出电流通常高达15A,因而倾向于采用1V工作电压来减少功率消耗。低功率的便携系统可能会首先采用UOUT=1V的电压,如PDA这类手持便携系统对功率耗散的增加极其敏感,这些装置通常尺寸极小,随着功能的不断增加,散热成为首先要解决的问题。

    21V电源面临的挑战

    许多便携系统采用同步补偿DC/DC拓扑结构。但是,随着输出电压不断降低,以及输入电压与输出电压比值UOUT/UIN的增加,设计高效变换器变得越发困难。由于UOUT/UIN与DC/DC变换器中功率MOSFET的负载周期成正比,输出电压降低得越多,同步FET(VT2)的导通时间便越长,开关损耗对控制FET(VT1)的影响就越大。目前,某些系统同步FET的负载周期已接近95%,控制FET接近5%。如果控制FET的负载周期进一步降低,将很难控制DC/DC变换器,而同步FET的导通时间也将增加。在某些情况下,要求同步FET的导通电阻非常低,以致必须使用两个器件并联,而不是传统的一个器件。但是,随着对功率密度要求的日益提高,系统体积的缩小又与增加器件相违。可见,功率半导体的优化不仅包括改善功率密度、增加效率、减少器件数量、减小主板空间,还要减小主板设计的复杂性、减少设计工作量等。这些因素都将促进便携系统向UOUT=1V的工作电压发展,从而必须改善系统功能,增加电池寿命和缩小体积。

    3优化功率半导体的1V电源性能

    UOUT=1V应用的功率半导体器件,UOUT/UIN控制FET的负载周期极低,因此对开关特性有特殊的要求。需要优化的参数是开关电荷Qsw。开关过程中电荷的转移会造成功率耗散,因此应尽可能降低Qsw以减少开关损耗,减少整个装置的损耗。减少Qsw和RDS(on)的目标是降低整个品质因数(FOM)。不过,减少这两个参数会对其它参数造成影响,因而必须选择最佳的硅平台技术。

    同步FET的负载周期非常长,峰值电流非常高,因此要尽可能降低RDS(on),这是同步FET的一个重要品质因数。当控制FET开启时,开关的电压(控制FET的源极电压,同步FET的漏极电压)随着dv/dt的比率增加不断上升,dv/dt值可能上升得过快,导致与同步FET的寄生电容CGD耦合,从而在同步FET栅极产生电压峰值。若这一峰值大于临界电压,同步FET将被开启。由于控制FET及同步FET均被开启,输入电源就会被短路,这会大大损坏电路性能,并造成过热及其它故障。可以通过优化同步FET的电荷比(QGD/QGS1<1) 来 避 免 Cdv/dt导 致 的 非 预 期 开 启 。 QGS1是 前 栅 临 界 电 荷 。

    同步补偿拓扑结构也通过并联肖特基二极管和同步FET来改善死区时间。死区时间是指FET开关信号间的内部延迟,用来避免直通。由于肖特基的UF值低于FET自身二极管的管压降,因而在死区时间内导通过程中,电流通过肖特基,而不是同步FET的自身二极管。UF越低,对死区时间的影响就越大。并联肖特基带来的自感应可能会造成肖特基UF值的升高,甚至抵消肖特基对FET自身二极管的优势,因而应将肖特基自感应控制在较低的水平,同时优化印制电路板设计以最大限度地减少或消除杂散电感。

图1同步补偿DC/DC变换器拓扑结构

图2UOUT=1VDC/DC变换器使用双FETKY

    4现有的1V电源方案

    IR的双FETKYTMIRF7901D1方案将所有功率半导体器件集成在单一的SO-8封装内,UOUT=1V,工作效率超过85%,并可节省主板面积60%。从而使双FETKY方案的功率密度得到大大改善。该器件完全优化了MOSFET和肖特基半导体,适用于要求高达5A输出电流的便携系统的同步补偿DC/DC变换器。

    FETKY封装设有连接控制FET、同步FET和肖特基二极管的互连结构,因而简化了电路板设计的复杂性,并有助于减少外部印制电路板占用面积和互连器件的杂散电感。与离散式方案相比,集成方案将主板占用空间降低了60%。

    双DualFETKY在1V操作环境下的峰值电路内效率高达约87%,可解决低功率应用的设计难题。

    随着1V工作环境从低功率便携系统向高功率系统延伸,应选择真正优化的功率半导体器件来增强系统性能。双FETKY方案可改善低至Vout=1V的工作电压的应用系统的性能。

    5图片说明

    图1为同步补偿DC/DC变换器拓扑结构,深色部分为控制MOSFET(VT1)、同步MOSFET(VT2)和并联肖特基二极管。每一器件都需要特别优化,以获得较高的电路效率。VT1要求低RDS(on)值和低的Qsw;VT2要求低RDS(on)及低的QGD/QGS1电荷比;肖特基要求低UF值。

    双FETKY为UOUT=1V的应用提供了较高的电路效率,峰值效率约为87%。图2展示的是低功率便携系统的电路性能,可以看出,UOUT=1V时,负载功率损耗得以降低。

关键字:便携系统  DC/DC  变换器 编辑:探路者 引用地址:UOUT=1V的DC/DC变换器发展趋势

上一篇:Protel软件在电路设计中的应用
下一篇:基于EPLD技术的抗干扰滤波器

推荐阅读最新更新时间:2023-10-18 16:21

减少了组件数量的隔离式正向 DC/DC 转换器
引言 过去 25 年,高密度隔离式 DC/DC 电源转换器已经发生了显著变化。全砖和半砖 DC/DC 转换器最初推出时,用户和电源公司都非常振奋。这类砖式 DC/DC 转换器纳入了数百个组件,非常容易使用,因而用户不必再自行设计。这类器件适用于电信应用,电信应用中的 48V 输入需要隔离输入和输出,因为总线电压提供很大的功率。此外,这类转换器可在数据通信和工业系统中作为分布式电源架构的起点。与此同时,一些公司争先恐后地进入了这一市场,追赶着这一领域的领导者。很多电源公司在过去几年中也在努力开发,以向市场推出新产品,这些公司设计了自己独有的磁性组件、拓扑以及控制电路, 一直在努力超越以前的版本和同类产品。大多数产品的占板面积都相
[电源管理]
减少了组件数量的隔离式正向 <font color='red'>DC</font>/<font color='red'>DC</font> 转换器
大显DC-618C数字电视机顶盒的软件设计与应用
    数字视听产品是近几年消费电子类产品的一个热点,而数字电视接收机顶盒是其中的一个重要的组成部分。     本文主要介绍了一款基于STi5518 芯片的DC-618C型数字电视接收机顶盒的软件设计与应用,对同类产品的具体实现有一定的指导作用。     1  引 言      数字电视的崛起在我国被誉为广电产业的第三次革命,它巨大的市场潜力正逐渐凸现出来。数字传输方式因其采用了先进的技术,具有传统的模拟传输方式所无法比拟的优势,取代后者已是不可阻挡的趋势。目前,数字电视正在世界范围内迅速地推广,作为接收数字电视的新兴家电,机顶盒正悄悄进入千家万户。     机顶盒(STB,Set Top Box)是广播媒介实现
[嵌入式]
如何设计更高效的AC/DC电源
电源就像保险单-你知道自己需要它,但你宁可永远都不必用到它。同样,你的下一代电子电子产品也离不开电源。从另一方面看,电源又和保险单不一样,因为在过去的20多年里,保险单一直在不断涨价,而电源则越来越小,功率越来越高,成本越来越低。缩小电源体积以给系统其它功能留出更多空间的趋势将继续下去。而且,电源还必须符合已有的标准格式,以避免系统重新设计。 对于AC/DC" target="_blank" AC/DC电源来说,推动这一趋势的并不是技术上的新突破,而是良好的设计,以及创新性地结合各种工艺和技术的优点来开发出性能高于平均水平的电源。本文将要讨论的是常见的100W-200W的AC/DC电源设计,其中着重强调的是结合各种方
[电源管理]
如何设计更高效的AC/<font color='red'>DC</font>电源
DCS控制系统的特点
集散控制系统是以微处理器为基础,采用控制功能分散、显示操作集中、兼顾分而自治和综合协调的设计原则的新一代仪表控制系统。集散控制系统简称DCS,也可直译为“分散控制系统”或“分布式计算机控制系统”。 它采用控制分散、操作和管理集中的基本设计思想,采用多层分级、合作自治的结构形式。其主要特征是它的集中管理和分散控制。目前DCS在电力、冶金、石化等各行各业都获得了极其广泛的应用。 DCS通常采用分级递阶结构,每一级由若干子系统组成,每一个子系统实现若干特定的有限目标,形成金字塔结构。 可靠性是DCS发展的生命,要保证DCS的高可靠性主要有三种措施:一是广泛应用高可靠性的硬件设备和生产工艺;二是广泛采用冗余技术;三是在软件设计
[嵌入式]
<font color='red'>DC</font>S控制<font color='red'>系统</font>的特点
双输出 DC/DC 控制器结合了数字电源系统管理和 模拟控制环路以实现 ±0.5% 的 VOUT 准确度
尽管电源管理对新式电子系统的可靠运行至关重要,但是在今天以数字方式管理的系统中,稳压器也许是最后一个仍然存在的“盲点”。就稳压器而言,很少有办法直接配置或监视关键电源系统运行参数。因此,希望全面实现数字控制的电源设计师必须使用混杂在一起的排序器、微控制器和电压监察器,以设定基本的稳压器启动和安全功能。目前已有数字可编程DC/DC   转换器可用,特别是那些为VRM 内核电源而设计并具备VID 输出电压控制功能的转换器,但是这类有特定应用目标的转换器不能直接沟通重要的工作参数,例如实时电流。 LTC3880 / LTC3880-1 结合了双输出同步降压型DC/DC 控制器和拥有通过基于I2C 的PMBus 总线使用全面的电源管理
[电源管理]
双输出 <font color='red'>DC</font>/<font color='red'>DC</font> 控制器结合了数字电源<font color='red'>系统</font>管理和 模拟控制环路以实现 ±0.5% 的 VOUT 准确度
L6598脱线控制器用于谐振式变换器
    因为更高的效率是可以达到的(高于传统的PWM),减少了高频电磁干扰,(谐振槽路利用了电路的寄生参数)             电源转换器市场对谐振拓扑的兴趣近来在增加。              事实上,这种拓扑允许更高的功率/重量比和低的元件功率损耗。              许多电源应用领域如适配器,电视,显示器,通讯机和汽车收音机都可以使用这种技术的转换器。              L6598设计成半桥式电路结构。             本文说明如何使用这种器件。最后将讨论所涉及的一些设计规则和应用要点。              器件特色描述              器件的内部电路图如图1,它是一个集成电路
[电源管理]
L6598脱线控制器用于谐振式<font color='red'>变换器</font>
车载和便携设备嵌入式系统设计
1. 龙芯2F 措置器的功能与特点   本系统采用的龙芯2F(LOONGSON-2F )措置器,是中国科学院计较手艺研究所最新发布的一款64 位MIPSⅢ指令集的通用RISC 微措置器。该措置器在国内首个采用了90nmCMOS 设计工艺,面积为35nm2,典型工作频率800MHz 下实测功耗为4~5W ,最高工作频率可达1G;最高浮点运算速度为每秒40/80 亿次双/单精度浮点运算,片内集成了PCI/PCIX 等IO 节制器,并集成片上二级CACHE、DDR2 内存节制器,很是适合高端 嵌入式 规模。   2. 系统硬件结构设计系统的结构框架 龙芯2F(LOONGSON-2F )措置器为整个系统的节制中
[工业控制]
CDC906 – 可定制编程的 3-PLL 时钟合成器/乘法器/除法器
CDC906 是目前市场上体积最小且功能强大的 PLL 合成器/乘法器/除法器之一。尽管其物理外形非常小巧,但却极为灵活。该器件能够在特定输入频率下生成几乎独立的输出频率。 输入频率可通过 LVCMOS、差动输入时钟或单个晶振产生。通过 SMBus 数据接口控制器可以选择相应的输入波形。 为了获得独立的输出频率,每个 PLL 的参考除法器 M 都能设置于 1 至 511 的范围内,反馈除法器 N 则可设置于 1 到 4095 的范围内。然后将 PLL-压控振荡器 (VCO) 频率路由至可自由编程的输出开关矩阵,再路由至 6 个输出中的任意一个。开关矩阵包括一个附加的 7 位后除法器(1 到 127 的范围)以及一个针对每个输
[新品]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved