高频链逆变技术发展综述

最新更新时间:2012-01-17来源: 互联网关键字:高频链  逆变技术  高频 手机看文章 扫描二维码
随时随地手机看文章

1引言

随着高频链逆变技术的不断发展,它的应用范围日益广泛。首先,电信、航空航天、军事等领域,常常要求供电装置重量轻、体积小、功率密度大和可靠性高;其次,随着石油、煤和天然气等矿产能源的不断消耗以及环境污染等问题,使用蓄电池、太阳能电池等作为能源的混合型电动汽车驱动系统日益成为研究热点,效率和体积是它的首要考虑因素;另外,在建筑行业,常常使用振动棒进行均匀混合浇注混凝土,这也要求振动棒供电装置体积小、重量轻、使用安全和可靠性高等;以及UPS技术的日益兴起和广泛应用……。考虑到以上各种供电装置和负载之间都要解决安全与匹配问题,因此常常需要加隔离变压器。针对上述要求,需要研究具有隔离变压器的逆变器电路拓扑。高频链逆变技术正是在这种情况下蓬勃发展起来的。

所谓高频链逆变技术就是采用高频脉冲变压器替代低频变压器传输能量,并实现变流装置的一、二次侧电源之间的电气隔离。从不同角度看高频链逆变器,可以有不同的划分形式。按负载相数可分为单相和三相;按功率流动方向可分为双向和单向两种形式;按电路工作机理分为PWM方式和谐振方式两种类型;按功率变换器的类型可分为电压源(Voltagemode或Buckmode)和电流源(Currentmode或Buckboostmode)两种;按电路拓扑结构又可分为AC/AC变换型、DC/DC变换型(DC/HFAC/DC/LFAC)和周波变流型(Cycloconvertertype)。下面以最后一种划分方法分别进行讨论。

2高频链逆变技术分类

2.1AC/AC变换型

2.1.1工频变压器隔离型

1973年,由Bedford首先提出高频链(HFlink)转换器的思想[1],接着由Gyugui和Pelly进行了深入发展。如图1所示,输入侧和输出侧都采用工频变压器隔离,由LC并联谐振网络为周波变换器提供自然换


图1工频变压器隔离型

图2高频变压器隔离型

相点,可以实现AC/AC或者DC/AC功能,并且功率可以双向流动,以及功率因数任意调整。这种变换型式存在如下主要缺点:

1)采用工频变压器,体积大、笨重;

2)具有音频噪音;

3)输入电压和负载波动时,系统响应速度慢。

2.1.2高频变压器隔离型

Sood和Lipo用实验验证了在谐振转换器中使用双向GTO实现高频链电源分布系统的可行性[2],如图2所示。这种变换型式的主要优点是

1)采用高频变压器,体积小,重量轻;

2)谐振软开关有利于降低开关损耗、提高效率。

主要缺点是

1)开关器件的耐流能力和耐压能力大;

2)采用双向开关,开关数目多,成本较高;

3)采用PDM控制方式,需要严格的同步关系。

2.2DC/DC变换型

这种类型高频链逆变器是目前应用最广泛的单向功率流动电压源高频链逆变器方案[3][4][5][6],它的经典电路如图3所示。该拓扑是在直流侧和逆变器之间插入一级DC/DC变换器,使用高频变压器实现电压调整和电气隔离。很明显,它具有三级功率变换过程:DC/HFAC/DC/LFAC。这种变换型式的主要优点是

1)所有开关都是单向的;

2)DC/DC部分和DC/AC部分的控制相对独

立,两部分配合起来比较简单,基本上不需要同步。

主要缺点是

1)功率单向流动;

2)通态损耗大;

3)由于功率级较多,导致可靠性降低。

2.2.1单端正激式高频链逆变器

如图4所示,前级部分由DC/DC正激电路及磁复位电路组成,采用PWM控制技术实现调压,后级部分由吸收电路、LC谐振电路和单相逆变器组成,采用PDM控制技术实现ZVS开关条件,以便减小开关损耗[7]。

2.2.2桥式高频链逆变器[8][9]

1)控制方案1如图5所示,其主电路包括直流电压—PWM高频逆变—高频变压器—快恢复二极管整流—大电容滤波—SPWM逆变器—单相50Hz正弦波输出。

2)控制方案2如图6所示,其主电路包括直流电压—SPWM逆变—高频变压器—(具有正弦包络线的正弦调制高频交流电)—快恢复二极管整流—小电容滤波—工频电压全波整流—50Hz方波驱动—50Hz正弦波输出。

由图5和图6可见,两种控制方案的主电路结构基本相同,但控制方法有所不同。在方案1中前后两部分电路不需要同步,相互独立,但开关损耗大。而在方案2中,50Hz方波驱动时相当于ZVS条件,开关损耗小,但要求严格同步。另外,由方案2可以实现三相

 


图3DC/DC变换型

 


图4单端正激式高频链逆变器

 


图5控制方案1

 

 


图6控制方案2

 


图7双向周波变流型高频链逆变器

图8硬开关PWM控制方式

图9LC谐振方式

输出负载,但是需要三套相同的单相电路,结构较复杂,而且相位需要严格同步。

2.3周波变流型

它是目前实现双向功率传输的常用方案。该拓扑结构一般由一个逆变器和一个周波变流器级联而成,如图7所示,从而省去了DC/DC变换型高频链逆变器中的直流环节,因此只需要二级功率变换(DC/HFAC/LFAC),减小了逆变器的通态损耗,提高了系统效率和可靠性。

2.3.1硬开关PWM控制方式

如图8所示[10],其三相输出采用周波变流器形式将高频电压变换成三相工频电压,主要用于中小容量UPS。采用周波变换器直接将高频交流变换成工频交流,与经过直流变换相比较,具有下列特点:

1)电力变换级数少,可以提高效率;

2)高频部分后级不需要直流电容器,系统总体成本低,结构简单;

3)硬开关PWM控制;

4)当高频变压器次级侧开路时,由于变压器漏感储能无放电回路而产生较大的电压尖峰。

为了解决图8电路存在的问题,在文献[11]中,周波变换器的开关控制是与一次侧高频逆变器同步且在零电压条件下进行的,同时提出了在一个采样周期内输出多个电压矢量的脉冲分配方法。文献[12]针对变压器漏感引起的副边电压过冲问题,采用换相重叠方法进行抑制,并获得了ZCS效果。

2.3.2LC谐振方式

高频变压器原边部分采用2个功率开关及LC串联谐振方式,副边部分采用周波变换器形式[13],如图9所示。利用准零电流ZCS条件来减小开关损耗,同时采用实时反馈控制方法使输出电压为正弦波。其主要特点是

1)不需要检测HFlink电流的过零时刻而实现准ZCS;

2)容易实现输出电压实时控制;

3)HFlink电流幅值随输出电流而变化。

2.3.3直流环节准谐振方式

高频变压器前级部分采用直流环节准谐振逆变电路(简称QRDCLI),后级部分采用周波变换器形式[14],如图10所示。同时还提出了改进的PDM控制策略和数字控制方法。该系统不需要缓冲电路,而且可以工作于四个象限。

3发展趋势

自从上世纪80年代以来,高频链逆变技术一直受到人们极大的关注,发表了大量的相关文献。目前存在的高频链逆变器拓扑,一般有以下几个特点:


图10直流环节准谐振方式

高频链逆变技术发展综述

1)DC/DC变换型需要三级功率变换,通态损耗高且控制复杂;

2)周波变流型大量使用双向开关,增加了电路成本和损耗;

3)电流换相时存在电压过冲问题;

4)非纯电阻性负载时,续流困难;

5)大部分电路针对CVCF系统设计,对于VVVF系统控制起来相对要复杂;

在单相高频链逆变电路中,目前已经出现了一些比较成熟的方案,但三相高频链逆变电路还很不成熟,还需要继续深入研究。总体来讲,主要涉及三个方面:

1)使用可关断器件和软开关技术,提高工作频率,以便达到装置小型化、低成本、无音频噪音,并且具有高可靠性、高效率;

2)研究新的组合式拓扑结构,分析复杂的工作过程以及建立数学模型,解决目前高频链逆变器存在的缺点;

3)研究各种控制方式,包括PFM、SPWM、SVPWM、DPWM、PDM和差频控制等。

4结语

高频链转换器是一种灵活多变的拓扑结构,其共同特点是电路结构形式紧凑,功率密度和效率高,响应速度快。另外,系统可以工作在20kHz以上,无音频噪音,滤波相对容易,并且功率可达kW级以上。因此,无论在恒压恒频(CVCF)领域,还是在调频调压(VVVF)领域都有很大实用价值,它是未来继续研究发展的一个重要课题。

关键字:高频链  逆变技术  高频 编辑:探路者 引用地址:高频链逆变技术发展综述

上一篇:基于DSP控制的三相AC/AC变频器控制方案的研究
下一篇:电致生物效应高压脉冲源控制系统设计

推荐阅读最新更新时间:2023-10-18 16:22

一.基于DSP重复控制技术逆变电源系统中的应用
本文提出一种 重复控制 的控制方案,利用重复控制器来跟踪周期性参考指令信号,减小输出电压谐波,同时电流环控制改善系统的动态性能。并根据该控制方案,设计和调试了一台基于DSPTMS320I"F2407A控制的单相1kW逆变器,仿真和实验结果均验证了该方案的良好性能。   1 重复控制的基本理论   重复控制是基于内模原理的一种控制思想。它的内模数学模型描述的是周期性的信号,因而使得闭环控制系统能够无静差地跟踪周期信号。单一频率的正弦波是典型的周期信号,它的数学模型为      那么只要在控制器前向通道串联上与输入同频率的正弦信号,就可以实现系统的无静差跟踪。重复控制也多用数字控制方式。离散后的重复控制
[电源管理]
一.基于DSP重复控制<font color='red'>技术</font>在<font color='red'>逆变</font>电源系统中的应用
Dialog推出针对最新移动处理器的可配置、高频率Sub-PMIC系列
高度集成电源管理、充电、AC/DC电源转换、Wi-Fi和蓝牙低功耗技术供应商Dialog半导体公司宣布推出全新电源管理产品系列,该系列包含四款新的sub-PMIC,具备业内最佳的瞬态响应特性和数字可配置特性,其尺寸均小于当前市场上的其他同类型解决方案。 该新的降压转换产品系列包含DA9217、DA9220、DA9121和DA9122,是Dialog第一个具有4MHz开关频率的sub-PMIC产品系列,可以缩小电感器面积和高度,允许使用更小的外部元件。这些器件非常适合基于ARM® Cortex™的多核应用处理器及高性能SoC、FPGA和GPU,有助于开发人员将6到10安培的电源解决方案轻松放置进下一代电子设备有限的电路板空
[电源管理]
Dialog推出针对最新移动处理器的可配置、<font color='red'>高频</font>率Sub-PMIC系列
基于汽车逆变器功率开关晶体管保护技术的设计与应用
随着油电混合车和电动车技术的演进, 逆变器 驱动技术已经进入汽车领域,从空调机和加热系统等低 功率 应用,一直到驱动和再生制动系统等高功率应用,所有这些系统的共通点是需要通过保护 逆变器 设计中的功率开关 晶体管 来最大限度地提高工作寿命。 汽车系统中的 逆变器 为电动机控制电源的关键部件,它可以把相对较低的直流电池电压转换成为交流高电压,其中使用 功率 开关来调节能量的递送,请参考图1。通过微控制器送出开关信号,并利用隔离门驱动器作为低电压微控制器和高电压功率开关间的接口。 许多新形态的 功率 开关,如碳化硅,都被评估是否可以使用于汽车逆变器中,但目前最具竞争力的还是IGBT。长久以来,这些功率 晶体管 已经被广泛应用于高电压
[电源管理]
基于汽车<font color='red'>逆变</font>器功率开关晶体管保护<font color='red'>技术</font>的设计与应用
电子高频金属探测器原理
     谈起金属探测器,人们就会联想到探雷器,工兵用它来探测掩埋的地雷。金属探测器是一种专门用来探测金属的仪器,除了用于探测有金属外壳或金属部件的地雷之外,还可以用来探测隐蔽在墙壁内的电线、埋在地下的水管和电缆,甚至能够地下探宝,发现埋藏在地下的金属物体。金属探测器还可以作为开展青少年国防教育和科普活动的用具,当然也不失为是一种有趣的娱乐玩具。   工作原理 由金属探测器的电路框图可以看出,本金属探测器由高频振荡器、振荡检测器、音频振荡器和功率放大器等组成。         高频振荡器   由三极管VT1和高频变压器T1等组成,是一种变压器反馈型LC振荡器。T1的初级线圈L1和电容器C1组成L
[安防电子]
Vishay 推出业内首款应用于高频RF和微波的 MLCC
日前,Vishay Intertechnology, Inc.宣布,推出业界首款用于高频RF和微波应用的表面贴装多层陶瓷片式电容器(MLCC)---VitramonVJ HIFREQ HT系列,其工作温度范围可以达到+200 C。对于通信基站和国防通信系统,Vishay 的VitramonVJ HIFREQ HT系列提供了四种紧凑型尺寸,都具有超高Q和低ESR。下面就随网络通信小编一起来了解一下相关内容吧。   对于暴露于+175°C或更高温度的高功率通信发射器和高频逆变器而言,设计师以前都不得不依赖仅限+150°C的MLCC。今天发布的器件工作温度范围达到了-55°C至+200°C,能够在此类应用场合提供长期的高可靠性。为了提
[网络通信]
开关电源转换器高频技术
  高频 开关电源 中用了多种磁元件,有一些基本的问题还需要研究解决。例如:   (1)随着 开关电源 的高频化,在低频下可以忽略的某些寄生参数,在高频下将会对某些电路性能(如开关尖峰能量、噪声水平等)产生影响。尤其是磁元件的涡流、漏电感、绕组交流电阻Rac和分布电容等,在低频和高频下的表现有很大的差别。虽然磁理论的研究已经有多年的历史,但 高频磁技术 理论作为电力电子学的学科前沿问题,应当受到人们的广泛重视。例如,磁心损耗的数学建模、磁滞回线的仿真建模、高频磁元件的计算机仿真建模和CAD、高频变压器一维和二维仿真建模等。有待研究的问题还有:高频磁元件的设计决定了高效率 开关电源 的性能、损耗分布和波形等,人们需要的是希望给出设计
[电源管理]
测量高频频率的方法
测量高频频率的方法一般有谐振法、比较法和计数法三种。 1、谐振法就是利用谐振系统与被测电流频率谐振时所产生的现象来确定被测频率的。 2、比较法是应用被测频率fx与标准频率fs(可能是二级、一级甚至绝对频率标准)相比较来确定fx。 3、计数器法是在一个特定的时间间隔内,数出被测频率信号的周期数来确定其频率的。 一、谐振法 1、用于测量高频频段,特别是特高频范围的测量 2、波长计个别元件以及同被测频率源的耦合提出以下的要求 (1)的有功损耗应尽量小。因此,通常利用空气介质的可变。 (2)电感线圈的电阻分量应尽量小。因此,电感线圈不应是小型的或铁心的。 (3)串联接入的谐振指示器的电阻应尽量小。因此,常用小电阻的热电式电流表。并
[测试测量]
测量<font color='red'>高频</font>频率的方法
机载高频开关电源工作原理及设计简介
 机载高频开关电源产品专门用于输入交流400Hz的场合,这是特意为了满足军用雷达、航空航天、舰船、机车以及导弹发射等专门用途所设计的。应用户要求,研制出机载高频开关电源产品对电子武器装备系统的国产化,打破国际封锁,提高我军装备的机动性,高性能都有重要的意义。   机上可供选择的供电电源有两种输入方式:115V/400Hz中频交流电源和28V直流电源。两种输入方式各有优缺点,115V/400Hz电源波动小,需要器件的耐压相对较高;而28V直流电源却相反,一般不能直接提供给设备部件使用,必须将供电电源进行隔离并稳压成为需要的直流电源才能使用。机载电源的使用环境比较恶劣,必须适应宽范围温度正常工作,并能经受冲击、震动、潮湿等应力筛选
[电源管理]
机载<font color='red'>高频</font>开关电源工作原理及设计简介
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved