电致生物效应高压脉冲源控制系统设计

最新更新时间:2012-01-17来源: 互联网关键字:滤波算法  开关电源  串口 手机看文章 扫描二维码
随时随地手机看文章

    近年来发达国家对具有软杀伤性的非致命武器(nonlethai weapons)表现出日益浓厚的兴趣,其中高压脉冲使生物失能效应研究是发展该类武器的重要课题。电致生物效应高压脉冲源是关键装置。为了研究不同脉冲参数对生物体的作用.要求脉冲的幅值、宽度和频率在一定范围内可调,因此高压脉冲源基于全固态刚管调制技术实现并由直流高压电源、串联IGBT调制开关和控制系统三部分组成。基于8051微控制器的高压脉冲源控制系统具有设计简单,电路可靠的优点。但其程序设计一般为前后台系统,实时性较差,从而使输出脉冲波形稳定性不能满足实验要求。本文基于嵌入式实时操作系统Small RTOS51进行程序设计,以及优化的采样信号滤波算法,使该高压脉冲源输出电压精度稳定达到0.1%。从而能可靠地用于生物效应实验。

    1 硬件设计

    电致生物效应高压脉冲源要求产生500~5 000 V宽范围的脉冲高压输出,控制系统管理高压脉冲源所有组件的工作,是实现高可靠性的核心。控制系统的主要功能是:不断扫描键盘获取电源工作参数/命令,根据设置的参数和不断采样的负载电压值控制高压脉冲电压幅值,从而使电源以预定电压恒压输出;采样初级开关电源状态,用以实时计算电源输出功率,以保护实现对象;实时在点阵式彩色图形液晶屏上显示电源的工作状态。高压脉冲源原理如图1所示。


    控制系统的硬件主要由控制核心、脉宽调制模块、电压控制与采样模块、键盘和显示模块、掉电数据保存模块组成。控制系统结构框图如图2所示。


    1.1 电压输出控制与采样模块

    当高压脉冲输出时,控制系统不断采样输出电压幅值,并与设定值进行比较,根据比较结果调整初级高压开关电源的输出。输出电压采样的准确性和初级高压开关电源输出控制精度是实现高压脉冲精确稳定输出的关键。基于MAX526和MAX197可实现12位分辨率的输出控制与采样。为了减少高压脉冲源初级开关电源引起的高频干扰对电压控制与采样电路的影响,除了对地线进行合理布线外,对MAX526,MAX197的数字电压源串联5 Ω电阻进行电源滤波。MAX526,MAX197外围电路如图3所示。


    1.2 脉宽调制模块

    电致生物效应源需要频率1~500 Hz,脉宽1~200 μs连续可调PWM信号控制高压脉冲输出。实现该PWM信号可以利用8051单片机自带的计数器,但是考虑到程序设计基于Small RTOS51,和大多数嵌入式操作系统一样,Small RTOS51会频繁关闭所有中断以保护系统的关键代码执行,这会造成基于软件生成的PWM信号精度较低,因此,本设计采用8254级联方式实现该PWM信号。

    8254有3个独立的16位减法计数通道,使用单-5 V电源,最大计数频率10 MHz,使用级联方式可使计数器0、2使用同一个1 MHz外部晶振,计数器2工作方式3,计数值固定为20,以产生50 kHz方波,该方波信号作为计数器1时钟,计数器1计数值为频率值,产生1~500 Hz频率可调方波,计数器0工作在方式1,计数值为脉宽值,计数器1输出的1~500 Hz信号作为门控,实现1~500 Hz,1~200μs的连续输出。8254外围电路如图4所示。


    1.3 键盘、显示与数据掉电保存模块
    电致生物效应源的操作界面由1×5键盘和65536真彩色图形智能液晶显示器件组成。5个按键直接用单片机的IO口扫描获得键值。液晶器件内置了32位ARM处理器和RS232串口,这样可以与任何具有串口功能的MPU方便连接,适合产品的快速开发。
    掉电数据保存芯片除了保存用户参数外,也用于程序的中间变量存储。EEPROM芯片是常用的低成本掉电数据保存芯片,但其存取速度太慢,会占用MPU过多时间,降低RTOS的实时性,因而系统采用自带锂电池与电池管理功能的NVRAM芯片DS1220,其每次数据存取时间为50 μs。

    2 软件设计
    Small RTOS51是专为51单片机开发的占先式嵌入式内核,提供消息队列、信号量、中断管理等基本服务,功能满足大多数工程项目应用。基于RTOS的程序设计可以保证电致生物效应高压脉冲源输出的稳定性。
    2.1 程序架构设计
    电致生物效应高压脉冲源控制系统程序共分4个任务。优先级从高到低依次为:键盘处理任务、初级开关电源状态监测与显示任务、与液晶显示器件通信任务、系统运行与系统状态显示任务。任务与RTOS内核、中断关系如图5所示。


2.2 软件滤波算法
    以高频开关电源为初级能源的高压脉冲电源的输出采样信号将不可避免地出现各种高频随机干扰信号,即使以低通滤波电路进行处理后,该采样信号仍然存在许多毛刺,如图6所示。


    因此,必须采用软件滤波才能得到准确的采样信号。在高频随机干扰严重的情况下常用的是中位值滤波算法,但该算法的缺点是灵敏度较差。因此,本文提出了一种改进的中位值平均滤波算法。其基本原理是:每组采样N个数据,对N个数据排序后去除最大的两个值和最小的两个值,对剩余的(N-4)个值求平均,该平均值作为最终的采样结果。在本文中,N=10。按照该算法,对上图信号进行采样,采样值最大为4.01 V,最小为3.99 V,抖动极差±0.01 V,并以3次最小二乘法进行数值模拟,如图7所示。可见,该算法可有效滤出高频随机干扰信号,并具有较高的灵敏度。



3 结论
    大多数基于高频开关电源为初级能源的高压脉冲源输出精度及稳定性达不到生物效应实验要求。实现高精度和稳定性的核心在于控制系统的设计,抗干扰能力强且具备较高灵敏度的采样算法是解决问题的关键。本文基于RTOS进行程序设计,并提出了一种改进的采样信号滤波算法,与传统中位值滤波算法相比,使电源输出脉冲精度和系统的可靠性得到提高。实测表明在长时间连续工作时输出精度保持为0.1%,能可靠用于生物效应实验。

关键字:滤波算法  开关电源  串口 编辑:探路者 引用地址:电致生物效应高压脉冲源控制系统设计

上一篇:高频链逆变技术发展综述
下一篇:浅谈变频技术在节能工程上的应用

推荐阅读最新更新时间:2023-10-18 16:22

揭秘:开关电源EMI技术方案
1.开关电源的EMI源 EMI干扰源集中体现在功率开关管、整流二极管、高频变压器等,外部环境对开关电源的干扰主要来自电网的抖动、雷击、外界辐射等。 (1)功率开关管 功率开关管工作在On-Off快速循环转换的状态,dv/dt和di/dt都在急剧变换,因此,功率开关管既是电场耦合的主要干扰源,也是磁场耦合的主要干扰源。 (2)高频变压器 高频变压器的EMI来源集中体现在漏感对应的di/dt快速循环变换,因此高频变压器是磁场耦合的重要干扰源。 (3)整流二极管 整流二极管的EMI来源集中体现在反向恢复特性上,反向恢复电流的断续点会在电感(引线电感、杂散电感等)产生高dv/dt,从而导致强电磁干
[电源管理]
开关电源的影响的主要因素
效率是任何开关电源的基本指标,任何开关电源的设计考首先需要考虑的是效率优化,特别是便携式产品,因为高效率有助于延长电池的工作时间,消费者可以有更多时间享受便携产品的各种功能。开关电源设计中,为获得最高转换效率,工程师必须了解转换电路中产生损耗的机制,以寻求降低损耗的途径。另外,工程师还要熟悉开关电源器件的各种特点,以选择最合适的芯片来达到高效指标。 本文介绍了影响开关电源效率的基本因素,并提供了一些关于降低开关电源损耗的方法。 效率估计 能量转换系统必定存在效率损耗,因此,在实际应用中我们只能尽可能地获得接近100%的转换效率。目前市场上一些高质量开关电源的效率可以达到95%左右。图1所示电路的效率可以达到97%,但在轻载时效
[电源管理]
<font color='red'>开关电源</font>的影响的主要因素
「51单片机」RS232串口通信代码分析
想来想去不知道要怎么样把232串口通信说清楚,想想还是直接把代码分析一遍吧... 重点是“常用波特率与定时器1的参数关系”这张表格!波特率的设置很重要! 一、串口初始化 void usart_init() { SCON = 0x50; //REN=1允许串行接受状态,串口工作模式1 TMOD = 0x20; //定时器工作方式2 PCON = 0x00; TH1 = 0xFD; //波特率9600、数据位8、停止位1。效验位无 (11.0592M) TL1 = 0x
[单片机]
「51单片机」RS232<font color='red'>串口</font>通信代码分析
stm32串口DMA方式发送数据
DMA发送数据 启动DMA并发送完成后,产生DMA发送完成中断,在DMA中断服务函数中执行以下操作: 在数据发送缓冲区内放好要发送的数据(此数据缓冲区的首地址必须要在DMA初始化时写入到DMA配置中去) 将数据缓冲区内要发送的数据字节数传给DMA通道(串口发送和接收不是同一个通道) 开启DMA,一旦开启,则DMA开始发送数据, 等待数据发送完成标志! 判断数据发送完成: 清DMA发送完成标志 关闭串口发送DMA通道 给前台(应用)程序设置一个软件标志位,说明数据发送完成。 DMA接收数据 串口接收DMA在初始化时就处于开启状态,一直等待数据的到来,串口中断IDLE在串口一直没有数据时,是不会产生的,
[单片机]
C51单片机通过串口调节PWM波
PWM 是一种常用的电子控制技术 PWM 本意为 脉冲宽度调制,可以简单理解为对占空比的控制。下图就是占空比图例,一个周期内高电平时间与周期时间的比值。 现在的一些MCU自带PWM控制功能,但是51/52单片机还是没有这个功能。可以用程序自己实现。 用到的51单片机资源如下: 1.双定时器及定时器中断 2.串口和串口中断 下面看下程序: PWM.H #ifndef _PWM_H #define _PWM_H #include #include #include #define uint unsigned int #define uchar unsigned char #define Pwm_pe
[单片机]
C51单片机通过<font color='red'>串口</font>调节PWM波
stm8s开发(三) UART的使用:串口通信!
串口通信是单片机学习的一个最基本、最重要的功能之一。串口通信可以间接的当做调试接口使用,实现单片机与电脑之间的通信。当然可以与一些模块(比如蓝牙、wifi)通信,也可以作为和其他单片机通信的工具。 STM8S的通用异步收发器(UART)主要特性: ● 全双工的,异步通信 ● 可编程数据字长度(8位或9位) ● 可配置的停止位-支持1或2个停止位 一般的,我们使用串口通信主要是关心几点参数:波特率、停止位、奇偶校验位。 其次就是如何发送、如何接收数据,这里介绍的使用阻塞式发送数据、中断方式接收数据。 以下代码是初始化串口,参数为:115200 1停止位 无校验位 void Init_UART1(void)
[单片机]
stm8s开发(三) UART的使用:<font color='red'>串口</font>通信!
用数字荧光示波器对开关电源功率损耗进行精确分析
随着电子产品对开关电源需求不断增长,下一代开关电源的功率损耗测量分析也越来越重要。本文介绍如何将数字荧光示波器和功率测量软件结合起来,迅速测定开关电源的功率损耗,并轻松地完成各项所需的测量和分析任务。 高速GHz级处理器需要新型开关电源(SMPS)提供高电流和低电压,这给电源设计人员在效率、功率密度、可靠性和成本等方面增加了新的压力。为了在设计中考虑这些需求,设计人员纷纷采用同步整流技术、有源功率滤波校正和提高开关频率等新型体系结构,但这些技术也随之带来了一些新的难题,如开关上较高的功率损耗、热耗散和过度的EMI/EMC等。 从“关”(导通)至“开”(关断)状态转换期间,电源会出现较高的功率损耗;而处于“开”或
[测试测量]
用数字荧光示波器对<font color='red'>开关电源</font>功率损耗进行精确分析
基于LT3573隔离型反激式DC-DC开关电源
   1  引言   自从1994年单片开关电源问世以来,为开关电源的推广和普及创造了条件。开关电源的应用涉及到各种电子电器设备领域,如程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。各种新技术、新工艺和新器件如雨后春笋般,不断问世,使得开关电源的应用日益普及。开关电源高频化是其发展的方向,从最初的20kHz提高到现在的几百kHz甚至几兆赫兹,高频化带来开关电源的小型化。目前,开关电源正朝着高效节能、安全环保、小型化、轻便化方向发展。    2  LT3573简介   LT3573是一种单片开关稳压器件,专为隔离型反击式拓扑结构而设计。在隔离型反激拓扑结构中,
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved