基于模糊策略的光伏发电MPPT控制技术

最新更新时间:2012-01-19来源: 互联网关键字:模糊策略  光伏发电  MPPT 手机看文章 扫描二维码
随时随地手机看文章

  随着全球经济的发展,能源问题日益尖锐,越来越多的国家开始关注能源利用及转换效率的问题。光伏发电具有无污染、无噪音、取之不尽、用之不竭等优点,因而越来越受关注。但是由于光伏系统本身非线性和光电池制造工艺复杂的特点,导致其转换效率一般为14%~15%。为了让太阳能电池阵列在同样日照、温度的条件下输出更多的电能,提出了最大功率点跟踪(MPPT)问题。

  MPPT本质上是一个寻优过程。通过测量电压、电流和功率,以及比较它们之间的变化关系,决定当前工作点与峰值点的位置关系,然后控制电流(或电压)向当前工作点与峰值功率点移动,最后控制电流(或电压)在峰值功率点附近一定范围内来回摆动。模糊控制适应性强,鲁棒性好,作为一种新的控制思想,非常适合用在对于太阳能光伏发电这种包含许多不确定量,而且很难用精确的数学模型描述出来的系统。

  1 光伏特性

  光伏电池相当于具有与受光面平行的极薄PN截面的大面积等效二极管,其等效电路如图1所示。

  在图1中,I为太阳能电池输出电流;Id为二极管工作电流;Irsh为漏电流;ILG为led/'''' target=''''_blank''''>光电池电流源;Rsh为光伏电池的并联等效电阻;Rs为光伏电池的串联等效电阻。由图1得到光伏电池的输出特性方程为:

  式中:

  前式表明,并联电阻Rsh越大,越不会影响短路电流的数值。所以设计中可忽略Rsh,而得到简化的光伏电池输出特性方程:

  式(1)~式(4)中:I为光伏电池输出电流;V为光伏电池输出电压;Ios为光伏电池暗饱和电流T为光伏电池的表面温度;K为波尔兹曼常数(1.38×10-23J/K);λ为日照强度;q为单位电荷(1.6×10-19C);k1为短路电流的温度系数;ISCR为标准测试条件(光伏电池温度25℃,日照强度为1 000 W/m2)下,光伏电池的短路电流;ILG为光电流;EGO为半导体材料的禁带宽度;Tr为参考温度(301.18 K);Ior为Tr下的暗饱和电流;A,B为理想因子,一般介于1和2之间。

  随着全球经济的发展,能源问题日益尖锐,越来越多的国家开始关注能源利用及转换效率的问题。光伏发电具有无污染、无噪音、取之不尽、用之不竭等优点,因而越来越受关注。但是由于光伏系统本身非线性和光电池制造工艺复杂的特点,导致其转换效率一般为14%~15%。为了让太阳能电池阵列在同样日照、温度的条件下输出更多的电能,提出了最大功率点跟踪(MPPT)问题。

  MPPT本质上是一个寻优过程。通过测量电压、电流和功率,以及比较它们之间的变化关系,决定当前工作点与峰值点的位置关系,然后控制电流(或电压)向当前工作点与峰值功率点移动,最后控制电流(或电压)在峰值功率点附近一定范围内来回摆动。模糊控制适应性强,鲁棒性好,作为一种新的控制思想,非常适合用在对于太阳能光伏发电这种包含许多不确定量,而且很难用精确的数学模型描述出来的系统。

  1 光伏特性

  光伏电池相当于具有与受光面平行的极薄PN截面的大面积等效二极管,其等效电路如图1所示。

  在图1中,I为太阳能电池输出电流;Id为二极管工作电流;Irsh为漏电流;ILG为led/'''' target=''''_blank''''>光电池电流源;Rsh为光伏电池的并联等效电阻;Rs为光伏电池的串联等效电阻。由图1得到光伏电池的输出特性方程为:

  式中:

  前式表明,并联电阻Rsh越大,越不会影响短路电流的数值。所以设计中可忽略Rsh,而得到简化的光伏电池输出特性方程:

  式(1)~式(4)中:I为光伏电池输出电流;V为光伏电池输出电压;Ios为光伏电池暗饱和电流T为光伏电池的表面温度;K为波尔兹曼常数(1.38×10-23J/K);λ为日照强度;q为单位电荷(1.6×10-19C);k1为短路电流的温度系数;ISCR为标准测试条件(光伏电池温度25℃,日照强度为1 000 W/m2)下,光伏电池的短路电流;ILG为光电流;EGO为半导体材料的禁带宽度;Tr为参考温度(301.18 K);Ior为Tr下的暗饱和电流;A,B为理想因子,一般介于1和2之间。

  当负载RL从0变化到无穷大时,即可得到如图2所示太阳能电池的输出特性曲线。调节负载电阻RL到某一值Rm时,在曲线上得到一点M,其对应的工作电压和工作电流之积最大,即Pm=ImVm。现将此M点定义为最大功率输出点(MPP)。

  2光伏系统的最大功率点跟踪

  在光伏系统中,通常要求光伏电池的输出功率保持在最大,也就是让光伏电池工作在最大功率点,从而提高光伏电池的转换效率。MPPT就是一个不断测量和不断调整以达到最优的过程,它不需要知道光伏阵列精确的数学模型,而是在运行过程中不断改变可控参数的整定值,使得当前工作点逐渐向峰值功率点靠近,使光伏系统运作在峰值功率点附近。

  对于电阻型负载,其负载线与I-V曲线的交叉点决定了光伏电池的工作点。不同的负载RL决定了不同的工作点。因此在不同温度、日照强度条件下,当最大功率点发生漂移时,可通过调整负载使光伏电池重新工作在最大功率点处。关于光伏电池的最大功率点跟踪算法,先前许多文献已提出过多种方法,如电压回授法、扰动观察法、功率回授法、直线近似法、实际测量法和增量电导法。

  然而,在光伏组件环境变化复杂的情况下,这些方法不能即时追踪,迅速反应。常规方法只能收敛到局部最高运行点,却不是P-V曲线的真正最高点。于是提出了占空比扰动法。图3为一般光伏发电系统的结构,MPPT控制器通过调整PWM信号的占空比D,来调节输入/输出关系,从而达到阻抗匹配的功能。

  3基于模糊控制的MPPT实现

  3.1模糊控制基本原理

  模糊控制建立的基础是模糊逻辑,它比传统的逻辑系统更接近于人类的思维和语言表达方式。在一些复杂系统,特别是系统存在定性的不精确和不确定信息的情况下,模糊控制的效果常优于常规控制。模糊控制系统基本结构如图4所示。

  模糊控制系统一般按输出误差和误差的变化对过程控制进行控制,其首先将实际测量的精确量误差e和误差变化Δe经过模糊处理而变换成模糊量,在采样时刻k,定义误差和误差变化为:

  式中:yr和yk分别表示设定值和k时刻的过程输出;ek为k时刻的输出误差。用这些量来计算模糊控制规则,然后又变换成精确量对过程进行控制。

  3.2模糊控制器的设计

  模糊逻辑控制器的设计主要包括以下几项内容:

  (1)确定模糊控制器的输入变量和输出变量;

  (2)归纳和总结模糊控制器的控制规则;

  (3)确定模糊化和反模糊化的方法;

  (4)选择论域并确定有关参数。

  模糊化的设计,其解答往往不是惟一的,在很大程度上要运用启发式试探方法以求取得最佳的选择。对于初始设计可先模拟,若控制性能达不到要求,则需要重新确定隶属函数,有时甚至要重新确定输入/输出量。

  3.2.1输入/输出量模糊子集及论域

  模糊系统的输入输出变量有输入功率变化量E;输入上次步长量A(n-1);输出步长量A(n)。将语言变量E和A分别定义为8个和6个模糊子集,即:

  E={NB,NM,NS,NO,PO,PS,PM,PB)

  A={NB,NM,NS,PS,PM,PB}

  式中:NB,NM,Ns,NO,PO,PS,PM,PB分别表示负大、负中、负零、正零、正小、正中、正大等模糊概念,并且它们的论域规定为14个和12个等级,即:

  E={-6,-5,-4,-3,-2,-1,-0,+0,+1,+2,+3,+4,+5,+6)

  A={-6,-5,-4,-3,-2,-1,+1,+2,+3,+4,+5,+6}

  3.2.2 MPPT的模糊控制算法

  图5中e(n)表示第n时刻与第n-1时刻输出功率之差的实际值;E(n)表示这个差值对应于模糊集论域中的值;a(n)表示第n时刻步长的实际值;A(n)表示这个步长值对应于模糊集论域中的值;Ke,Ka分别为量化因子。

  通过对光伏电池输出P与占空比D之间的特性曲线分析,并且考虑到外界环境因素对光伏电池输出功率的影响,对实际仿真结果进行调整得到的最终控制规则如表1所示。

  4系统建模与仿真

  Matlab的模糊逻辑工具箱拓展了Matlab对模糊逻辑系统的设计能力,已经成为运用模糊手段解决工程问题的重要工具。在此结合Matlab7.1中的模糊逻辑工具箱进行辅助设计。模糊逻辑工具箱在默认状态下给出了mamdani型控制器,选择“交”方法为min;“并”方法为max;推理方法为min;聚类方法为max;解模糊方法为重心法。图6为模糊逻辑工具箱界面。

  模糊控制器设计完毕后,利用Simulink搭建光伏电池模型,如图7所示。

  其次搭建MPPT模糊控制系统如图8所示。

  图中,subsystem为光伏电池模型;S函数只实现D(n)=D(n-1)+a(n)的功能。其中,经过反复试验,量化因子Ka取0.01;Ke取10。模拟外界因素强度从600 W/m2突然增大到900 W/m2,表面温度T=25℃,并设置仿真最大步长时间为0.025 s,运行时间为10 s。由此得到输出功率波形如图9所示。

  图10为扰动观察法输出功率的跟踪波形。通过比较可以发现,采用模糊逻辑控制跟踪光伏电池最大功率点,不仅跟踪迅速,而且达到最大功率点后基本没有波动,即具有良好的动、稳态性能。

  5结语

  在太阳能发电系统中进行最大功率点跟踪时,根据跟踪情况和电池表面温度、日照强度等外界因素的变化,利用模糊控制来智能地调整步长。

  运用Simulink建立模型并进行仿真,其结果表明,将模糊控制运用于最大功率跟踪是可行的,并且表现出良好的控制性能。

关键字:模糊策略  光伏发电  MPPT 编辑:探路者 引用地址:基于模糊策略的光伏发电MPPT控制技术

上一篇:双电源双风机智能保护控制系统的设计
下一篇:电池组的热分析

推荐阅读最新更新时间:2023-10-18 16:22

光伏小型离网系统支架的设计要求浅析
  太阳能离网系统被用于远离公共电网的偏远地方,其用途极其广泛,从居民生活用电、交通灯、到通讯领域、应急电源等等,解决了偏远地区无法供电的难题。   小型离网系统主要用于居民生活用电,一般由几块组件组成一套。其支架的设计要求如下:   1.材料轻便:离网系统通常要翻山越岭才能到达用户手中,为了方便运输,减轻重量是首要条件。因此铝支架应用于离网系统有显著的优势;   2.用料节俭:小型系统支架的平均造价相对较高,如何在结构安全的前提下节省材料是对支架公司的要求;   3.安装简易:必须将安装工具的种类和数量减到最少。在某些地区,如中国西藏,牧民需要经常迁徙,支架尽可能地便于装卸;   4.因地制宜
[电源管理]
太阳能光伏发电投币免值守式电动车充电站设计
鉴于电动车投币式充电站必须在接有市电的路段才能及时为没电的电动车进行充电,又无人二十四小时值守在充电站,设计了一款利用太阳能光伏发电的投币免值守式电动车充电站。该文对光伏投币免值守式多元化电动车充电站的设计、适用路段、使用方法进行了详细的分析与阐述,同时该充电站同样适用于市区及有市电的路段,用于减少电力消耗对市电的影响,具有一定推广意义和应用前景。 1.引言 目前,在中国二三线及以下城市,电动自行车已经成为人们外出的主要交通工具之一,在外出过程中所遇到的电动车无电的尴尬情况时有发生,而电动车笨重的车身在人力驱动的过程中费时费力,人们不得不在电动车无电的情况下推动前行。随着矛盾的升级,小型电动车充电站出现了,投币式电动车充电站也
[电源管理]
海化集团一期300MW光伏发电项目光伏电站、独立储能电站及首批光伏成功并网发电!
  2023年1月14日21时00分,随着操作人员合上海化滨能电站220kV化南线211开关并进行系列倒闸操作后,潍坊市滨海风光储智慧能源示范基地一期300MW光伏发电项目光伏电站、独立储能电站及首批光伏同日成功并入国网,顺利进入试运行调试阶段。   基地一期项目首批光伏并网成功,预示着光伏发电项目进入了实质性的运营阶段,同时也标志着海化集团新能源转型项目迈入了新的发展阶段。
[新能源]
太阳能是完美清洁能源?生产这些发电设备却“毒性”十足
科学家刚刚发现了大量碲矿藏,这种稀有金属是发展尖端 太阳能 技术的关键元素。作为太阳能领域的专家,我应该感到高兴。但问题在于:这次发现的碲矿位于海底,那里还未曾被人类打扰。   人们常常理想化地认为太阳能是一种完美的清洁能源。阳光直接转化成电能,不产生排放,没有石油泄漏或污染,完全清洁。然而,这种看法忽略了太阳能电池板的复杂生产程序。   太阳能发电的确清洁无污染,但生产太阳能发电设备所需的一些材料却是有毒或是稀有的。就拿碲化镉薄膜太阳能电池这一技术来说,其中就需要用到有毒的镉和稀有的碲化物。     碲化镉薄膜属于第二代“薄膜”太阳能电池技术,其光吸收能力远胜于目前大多数太阳能电池使用的晶硅,因此吸收层不需要像现在这么厚。一层
[嵌入式]
数字化光伏发电逆变器的设计
  1  引言   太阳能光伏发电是一种将太阳光辐射能直接转换为电能的新型发电技术。太阳光辐射能经过光伏电池转换为电能,再经能量储存、控制与保护、能量变换等环节,使之可按人们的需要向负载提供直流电能或交流电能。光伏电池阵列所发出的电能为直流电,但是大多数用电设备采用的是交流供电方式,所以系统中需要有逆变器将直流电变换为交流电以供负载使用。显然,逆变器的效率将直接影响到整个系统的效率,因此,光伏系统逆变器的控制技术具有重要的研究意义 。   在逆变器的设计中,通常采用模拟控制方法,然而,模拟控制系统中存在很多缺陷,如元器件的老化及温漂效应,对电磁干扰较为敏感,使用的元器件数目较多等等。典型的模拟PWM逆变器控制系统采用自然采样
[电源管理]
数字化<font color='red'>光伏发电</font>逆变器的设计
上海电气联手Nextracker,为中东光伏发电提高能效
Nextracker ™宣布与上海电气建立全面战略合作伙伴关系,并将为上海电气提供超过1吉瓦(1GW)世界领先的NX Horizon™光伏跟踪支架,以提高迪拜穆罕默德·本·拉希德(Mohammed Bin Rashid)光伏发电基地第五期的发电量。该光伏发电基地是中东最大的光伏发电项目,位于迪拜以南50公里处,由迪拜电力和水务管理局(DEWA)所有。该项目将帮助迪拜实现2050年前,75%的城市能源供应来自于可再生能源的长期目标。 Nextracker 的光伏跟踪支架在全球的安装量和在建项目已近40 吉瓦。该公司在按时交付优质光伏发电系统方面声誉卓著。在独立测试服务提供商PV Evolution Labs (PVEL)出版的最
[电源管理]
上海电气联手Nextracker,为中东<font color='red'>光伏发电</font>提高能效
太阳能光伏发电必备知识
1、太阳能光伏系统的组成和原理   太阳能光伏系统由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。   太阳能光伏系统具有以下的特点:   - 没有转动部件,不产生噪音;   - 没有空气污染、不排放废水;   - 没有燃烧过程,不需要燃料;   - 维修保养简单,维护费用低;   - 运行可靠性、稳定性好;   - 作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25年以上;   根据需要很容易扩大发电规模。   光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类:独立发电系统和并网
[电源管理]
太阳能<font color='red'>光伏发电</font>必备知识
江苏省光伏发电系统集成工程技术研究中心成立
2011年5月14日,以中环光伏系统有限公司为依托单位、中国电力科学研究院新能源研究所、东南大学建筑设计研究院为合作单位共建的“江苏省光伏发电系统集成工程技术研究中心”(以下简称:中心)技术委员会第一次工作会议在南京中环光伏公司召开。 江苏省科技厅科技机构与条件处景茂处长、江苏省能源局陈勇副局长、南京市科学技术委员会蔡伯圣副主任等有关领导到会并作了重要讲话。省科技厅和市科委领导作为中心的主管部门领导,对中心在工程技术研发、成果转化、人才培养、技术交流等方面提出了殷切希望。省能源局陈勇副局长在讲话中指出,中心的成立建立了一个很好的平台,有助于提升我省可再生能源利用技术的进步。 中心成立了第一届技术委员会,由江苏省光伏产业协会原
[新能源]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved