SPWM变频电源双闭环控制的设计和研究

最新更新时间:2012-02-14来源: 电源在线网关键字:变频电源  正弦脉宽调制  瞬时值控制 手机看文章 扫描二维码
随时随地手机看文章
1 引 言

  在目前逆变电源的控制技术中,滞环控制技术和SPWM控制技术是变频电源中比较常用的两种控制方法。滞环控制技术开关频率不固定,滤波器较难设计,且控制复杂,难以实现;SPWM控制技术开关频率固定,滤波器设计简单,易于实现控制。当二者采用电压电流瞬时值双闭环反馈的控制策略时,均能够输出高质量的正弦波,且系统拥有良好的动态性能。

  对于SPWM变频电源,采用电压电流瞬时值双闭环反馈的控制策略,工程中参数设计往往采用试凑法,工作繁琐,误差较大。本文详细介绍了SPWM变频电源主要的控制参数设计准则和方法,对于快捷、准确地选择合适的闭环参数,有很大的实践应用价值。

2 系统简介

图1 双闭环控制的SPWM变频电源系统构成简化图

  图1为系统构成简化图,该系统由主电路和控制电路两部分组成。逆变电源主电路采用以IGBT为开关器件的单相逆变电路, 采用全桥电路结构,经过LC低通滤波器,滤去高频成分,在滤波电容两端获得相应频率的光滑的正弦波。

  虚线框包括的是控制电路,电压电流瞬时值双闭环反馈控制是由输出滤波电感电流和输出滤波电容电压反馈构成的。其外环为输出电压反馈,电压调节器一般采用PI形式。电压外环对输出电压的瞬时误差给出调节信号,该信号经PI调节后作为内环给定;电感电流反馈构成内环,电流环设计为电流跟随器。电流内环由电感电流瞬时值与电流给定比较产生误差信号,与三角形载波比较后产生SPWM信号,通过驱动电路来控制功率器件,保证输出电压的稳定,形成典型的双环控制。

  在实际应用中采用电流内环之外还设置电压外环的目的除了降低输出电压的THD外,还在于对不同负载实现给定电流幅值的自动控制。

[page]3 SPWM变频电源的线性化模型

  由于SPWM变频电源中存在着开关器件,因此是一个非线性系统,但因为一般情况下,SPWM变频电源的开关频率远高于调制频率,故可以利用传递函数和线性化技术,建立起SPWM变频电源的线性化模型[1],如图2所示。图中,脉宽调制环节由脉宽信号产生环节和功率电路环节组成,一般可以等效为一个线性比例环节,用K表示,其输入为正弦控制电压,输出是等效的正弦调制电压。输出滤波环节由滤波电感Lf和电容Cf组成,为分析方便,取负载为阻性负载。电流环的反馈取自输出滤波电感的电流,为此滤波环节的传递函数可改写为两个环节的串联,以UAB(S)为输入, Ilf(S)为输出及以Ilf(S)为输入,Uo(S)为输出,求出相应的传递函数如图2中传递函数1和传递函数2。

图2 SPWM变频电源系统的数学模型


4 闭环设计

  电压、电流双闭环控制系统是一种多环系统,设计多环系统的一般方法是:从内环开始,逐步向外扩大,一环一环地进行设计。先从电流环入手,设计好电流调节器,然后把电流环看作是电压调节系统中的一个环节,再设计电压环,因此首先进行电流环的设计实现[2]。相应的性能指标为输出功率500VA,功率管开关频率25K,频率变化范围15~1000Hz,输出电压为220VAC。滤波器参数Lf为1.6mH,Cf为2u。

4.1电流环的设计

  从图2中,可得未加补偿校正环节的电流环开环传递函数:
  (1)

  图3(a)为校正前电流环开环在空载、感性载(φ=0.75)、满载下的幅相曲线[3]。从图中可以看出,开环频率特性的相移小于90º,因此理论上电流闭环对任何的开环增益都是稳定的。电流环的设计必须保证电流闭环具有较好的稳定性,同时具有较快的动态响应和抗噪声干扰能力。

(a)校正前电流环开环幅相曲线


(b)校正后电流闭环幅相曲线

图3 校正前后不同负载时电流环幅相曲线

  加了补偿环节后,电流闭环的传递函数:
  (2)

 [page] 其中,Kif为电流环反馈系数,根据输出电压和功率确定这儿取为0.01。图4为不同的Kip值下电流内环的幅相曲线,能够看出增大前向通道的调节器增益Kip可以扩大带宽范围,但会导致系统的抗噪声干扰能力下降,使得电流内环的增益值变大,同时也会降低系统的稳定性,不利于电压环设计,所以调节器增益也应适当选取,满足所需的带宽要求即可,可选择Kip=6。

图4 不同的Kip值下电流闭环幅相曲线

  图3(b)给出了Kip=6时,不同负载的电流闭环幅相曲线,从仿真曲线可以看出电流内环具有带通滤波器的特性,且除空载具有更宽的带宽外带宽基本不受负载变化的影响。

4.2 电压环的设计

  由图2,可得未加电压调节器的系统的等效开环传递函数:

  其不同负载下系统的幅相曲线如图5(a)所示,可以看出,系统低频增益很小,输出稳态误差很大,高频衰减不快,因而需要加入适当的补偿环节加以校正,通常可采用PI控制器作为电压调节器。电压环设计希望校正后系统低频增益尽可能高,以尽量减小输出正弦电压的稳态误差;同时也希望尽可能消除高频分量的影响,其高频衰减尽可能快,且系统还需具备适当的相角裕度,截止频率ωc足够大,可以保证较快的动态响应[4]。

  加了PI控制器的系统等效开环传递函数为:
  (4)

  其中,Kvf为电压环反馈系数,由输出电压与给定电压之间的对应关系求得,这儿取0.036。图6(a)是积分参数固定时,比例参数变化时相应的幅相曲线;图6(b)为比例参数固定时,积分参数变化时相应的幅相曲线。从6(a)中可以看出在积分参数一定的情况下,改变比例参数,相频曲线保持恒定,而幅频曲线则随着Kp的变化而变化,当Kp增加时,低频增益变大(稳态误差变小),截止频率增加即响应速度变快。截止频率ωc要合理选择:因为ωc太小,系统响应速度太慢;ωc太大,则系统稳定性就差,一般需满足下式:
  (5)

  式中,fc为开关频率。根据输出频率的变化范围最大频率输出是1K,开关频率是25K,根据式(5)可选定曲线2为最优曲线。
 
  从图6(b)可以看出积分常数Ti改变时,对截止频率和低频增益影响很小,而对相频特性影响则很大,从而影响稳定裕度。工程上要求稳定裕度取在45o左右,过低于此值,系统的动态性能较差,且对参数变化的适应能力较弱;过高于此值,意味着对整个系统及组成部件要求较高,因此造成实现上的困难,所以选择曲线2为最优曲线,即Ti=40us。综合上述分析,可以选定合适的比例常数、积分常数。

 [page] 图5(b)是所选定的PI调节器在不同负载下系统的幅相曲线。可以看出空载到满载的低频增益都较
大,说明稳压精度较高;相角裕度为
,从空载到满载只有较小的变化,整个负载范围内在稳定性上满足理论上和工程上的要求;本系统的截止频率约为开关频率的1/4.25倍,满足截止频率的一般要求;同时低频增益较未加校正前也有显著提高即系统的稳态误差大大减小。可见系统的稳定性和快速性都基本满足要求。


5 实验结果和结论

  本文对电压、电流双闭环瞬时值控制的SPWM变频电源设计和研制了一套实验样机,并进行了原理性实验,其测试数据和设计值基本相符。实测的电流,电压波形如图7所示。

  综合以上实验波形可知,系统实现了输出频率的可调性,且在整个频率范围内保证了很好的电压输出波形和稳压精度,可以看出变频输出波形光滑,波形失真度低,频率输出范围宽。

  通过以上的讨论,并根据测试结果表明,通过上述方法和规则设计的控制参数是可行的,可使系统具有较好的稳态输出特性。且设计简单、快捷、实用、极大的减少了工作量。


参考文献

[1] Vattche Vorperian. Simplified Analysis of PWM Converters Using Model of PWM Switch Part I And Part II. IEEE Trans on Aerospace and Electronics Systems. 1990, 26 (3):490-505.

[2] Naser M. Abdel-Rahim and John E. Quaicoe. Analysis and Design of a Multiple Feedback Loop Control Strategy for Single-Phase Voltage-Source UPS Inverters. IEEE Trans. on PE,1996,11 (4): 532-540.

[3]袁长迎.掌握和精通Mathcad2000.北京:机械工业出版社,2001.

[4]胡寿松.自动控制原理.北京:国防工业出版社,1994.
关键字:变频电源  正弦脉宽调制  瞬时值控制 编辑:冰封 引用地址:SPWM变频电源双闭环控制的设计和研究

上一篇:柔性直流输电技术分析
下一篇:一个适用单相、三相供电的开关电源的设计

推荐阅读最新更新时间:2023-10-18 16:24

基于AN8026变频器高性能电源设计方案
1.前言 变频器在能源节约、电力环保方面意义重大,电动机驱动是电能消耗大户,约消耗全国65%发电量,近三十多年来变频调速已在钢铁、冶金、石油、化工、电力等工作中得到广泛运用,其他家用电器例如变频冰箱,变频洗衣机、变频微波炉等也已相继出现,因此设计可靠高性能的变频器电源尤为重要。本文设计的电源采用开关电源控制集成电路AN8026,AN8026为松下公司开发的反激式单端输出开关驱动控制器,其内部采用RC充放电控制的RS触发器作为驱动信号源,其输出脉冲可直接驱动MOSFET开关管,而不必外设灌流电路。 变频技术目前得到了广泛的应用,而变频器的可靠稳定运行决定了变频器性能指标,作为基础硬件,变频器电源的高效可靠运行至关重要。如图1所示为变
[电源管理]
基于AN8026<font color='red'>变频</font>器高性能<font color='red'>电源</font>设计方案
变频电源的优异特性分析
采用变频电源稳压器调速,一是根据要求调速用,二是节能。它主要基于下面几个因素:   1) 变频调速系统自身损耗小,工作效率高。   2) 电机总是保持在低转差率运行状态,减小转子损耗。   3) 可实现软启、制动功能,减小启动电流冲击。   在采用变频电源调速时,需从工艺要求、节约效益、投资回收期等各方面考虑。如果仅从工艺要求、节约效益考虑,下面几种情况选用变频调速较有利:   F根据工艺要求,生产线或单台设备需要按程序或按要求调整电机速度的。如:包装机传送系统,根据不同品种的产品,需要改变系统传送速度,使用变频调速可使调速控制系统结构简单,控制准确,并易于实现程序控制。   F用变频调速代替机
[电源管理]
基于DSP的SPWM变频电源数字控制
   摘要: 介绍了基于DSP的变频电源数字控制系统,详细讨论了利用DSP TMS320LF2407产生频率幅值可按需要改变的SPWM波的程序设计策略和算法。实验效果很好,满足了变频器在线调试的要求。    关键词: 变频电源;正弦脉宽调制;数字信号处理器    0 引言   数字信号处理器(DSP)已广泛应用在高频开关电源的控制,采取DSP作为变频电源的控制核心,可以用最少的软硬件实现灵活、准确的在线控制。数字信号处理器TMS320LF2407既有一般DSP芯片的特点,还在片内集成了许多外设电路,使其可以很方便地实现变频电源控制。本文中,控制系统采用了工程应用较多的正弦脉宽凋制技术,该技术具有算法简单,硬件实现
[嵌入式]
单相正弦脉宽调制逆变器的设计
摘要:论述了单相正弦波逆变器的工作原理,介绍了SG3524的功能及产生SPWM波的方法,对逆变器的控制及保护电路作了详细的介绍,给出了输出电压波形的实验结果。 关键词:逆变器;正弦波脉宽调制;场效应管 引言 当铁路、冶金等行业的一些大功率非线性用电设备运行时,将给电网注入大量的谐波,导致电网电压波形畸变。根据我们的实验观察,在发生严重畸变时,电压会出现正负半波不对称,频率也会发生变化。这样的供电电压波形,即使是一般的电力用户,也难以接受,更无法用其作为检修、测试的电源。同时,在这种情况下,一般的稳压电源也难以达到满意的稳压效果。为此,我们设计了该逆变电源。其控制电路采用了2片集成脉宽调制电路芯片SG3524,一片用来产生P
[电源管理]
变频电源的选择需要考虑的因素及要点
前言 变频电源的选择(变频电源的种类)正确选用对于机械设备电控系统的正常运行是至关重要的。在选择变频电源(变频电源知识)时,我们所要考虑的因素及要点也是多方面的。那么,在变频电源的选择过程中,我们都要考虑那些方面呢?很多人或许对此并不了解。鉴于此,小编通过搜集整理资料,对有关选择变频电源的考虑因素及选择要点作了详细的归纳总结。 变频电源的选择原则 (变频电源的选购) 首先要按照机械设备的类型、负载转矩特性、调速范围、静态速度精度、起动转矩和使用环境的要求,然后决定选用何种控制方式和防护结构的变频电源最合适。所谓合用是在满足机械设备的实际工艺生产要求和使用场合的前提下,实现变频电源应用的最佳性价比。 变频电源
[电源管理]
变频电源的正确选用
变频 电源 的正确选用对于 机械 设备电控系统的正常运行是至关重要的。选择变频 电源 ,首先要按照 机械 设备的类型、负载转矩特性、调速范围、静态速度精度、起动转矩和使用环境的要求,然后决定选用何种 控制 方式和防护结构的变频电源最合适。所谓合用是在满足机械设备的实际工艺生产要求和使用场合的前提下,实现变频电源应用的最佳性价比。 第一点.根据负载特性选取适当控制方式的变频电源 现在市场上出售的变频电源种类繁多,功能也日益强大,变频电源的性能也越来越成为调速性能优劣的决定因素,除了变频电源本身制造工艺的“先天”条件外,对变频电源采用什么样的控制方式也是非常重要的。下表综述了近年来各种变频电源控制方式的性能特点。 综
[电源管理]
SPWM变频电源双闭环控制的设计和研究
1 引 言   在目前逆变电源的控制技术中,滞环控制技术和SPWM控制技术是变频电源中比较常用的两种控制方法。滞环控制技术开关频率不固定,滤波器较难设计,且控制复杂,难以实现;SPWM控制技术开关频率固定,滤波器设计简单,易于实现控制。当二者采用电压电流瞬时值双闭环反馈的控制策略时,均能够输出高质量的正弦波,且系统拥有良好的动态性能。   对于SPWM变频电源,采用电压电流瞬时值双闭环反馈的控制策略,工程中参数设计往往采用试凑法,工作繁琐,误差较大。本文详细介绍了SPWM变频电源主要的控制参数设计准则和方法,对于快捷、准确地选择合适的闭环参数,有很大的实践应用价值。 2 系统简介 图1 双闭环控制的SPWM变频电源系统构成简
[电源管理]
SPWM<font color='red'>变频</font><font color='red'>电源</font>双闭环<font color='red'>控制</font>的设计和研究
变频器中间直流总线供电的开关电源
带有360-900V直流输入、可以直接由变频器中间直流总线供电,这样的电源听起来非常令人心动。但是这样的电源却有着特别的设计要求。 用于控制系统和其它应用的电源传统上都是直接由单相或三相电网供电的。然而,由于越来越多的变频器以及伺服电机放大器的应用,新的供电可能出现了:由变频器的中间直流总线供电(图1)。这种供电的优点在于,可以利用运转的电机中储存的、“免费”的动能来为控制系统供电。如果这种可能成为现实,将大大提高电源相对电网波动的稳健性,而不必使用需要经常性维护的蓄电池缓冲系统。     为了理解这种应用,可以以吊车为例:当吊车刚刚向上吊起货物时,如果供电电网突然中断,会发生什么呢?通常,控制系统
[嵌入式]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved