新型非PWM功率单元在完美无谐波高压变频器中的应用

最新更新时间:2012-02-18来源: 21IC中国电子网关键字:PWM功率  谐波  高压  变频器 手机看文章 扫描二维码
随时随地手机看文章
1 引言

  随着变频调速技术的发展,作为大容量传动的高压变频调速技术得到了广泛应用。高压电动机利用高压变频器可以实现无级调速,既可满足生产工艺过程对电动机调速控制的要求,又可节约能源,降低生产成本[1]。自1994年美国罗宾康公司推出第一代完美无谐波高压变频器以来,由于其性能好、可靠性高、维修简单等优点,在欧美、日本、中国等市场一直处于领先地位,完美无谐波高压变频器较之普通高压变频器,无论从变频器控制性能、可靠性保证、制造工艺等方面都提高了很大的一个档次[1]。但是,到目前为止,这种完美高压变频器的功率单元的整流部分采用单向二极管串联,逆变器部分输出采用多电平移相式pwm技术,每个功率单元脉冲控制都是采用pwm控制,逆变器的控制脉冲波形,由参考正弦波和三角波比较产生。为了进一步改进高压变频器的节能与降低电网污染及电磁干扰等现象,本文阐述了一种新型功率单元,即非pwm功率单元。非pwm并非真的不是pwm原理,只是把用于产生脉冲波形的三角载波,换成了频率不变,幅值变化的矩形波。为了引出新型功率单元,我们先从简单地对普通完美无谐波高压变频器进行介绍入手。

2 完美无谐波高压变频器原理

  完美无谐波高压变频器采用若干个变频功率单元串联的方式实现直接高压输出。该变频器具有对电网谐波污染小,输入功率因数高,输出波形质量好,不存在谐波引起的电机附加发热、转矩脉动、噪音、dv/dt及共模电压等问题的特性,不必加输出滤波器,就可以使用普通的异步电机,包括国产电机。

  2.1 功率单元串联多电平结构

  如图1所示,变频器共有15个功率单元,从a1~a5、b1~b5、c1~c5。每个功率单元输出电压为690v,功率单元本身结构完全相同[2]。6kv或10kv 电网电压经过副边多重化的隔离变压器给功率单元供电,功率单元为三相输入、单相输出的交-直-交pwm

  电压源型逆变器结构,实现变压变频的高压直接输出,供给高压电动机。以6kv输出电压等级为例,每相由5个额定电压为690v的功率单元串联而成,输出相电压达3450v,线电压达6kv左右,每个功率单元分别由输入变压器的一组副边供电,功率单元之间及变压器二次绕组之间相互绝缘。二次绕组采用延边三角形接法,实现多重化,以达到降低输入谐波电流的目的[2]。对于6kv电压等级的变频器,就是36脉冲的整流电路结构,输入电流波形接近正弦波。由于输入电流谐波失真很低,变频器输入的功率因数可达到0.95以上。

 

 [page] 2.2 传统pwm功率单元

  传统的pwm功率单元电路结构如图2所示。

  功率单元为三相输入单相输出的交-直-交pwm电压源型变频器,移相变压器的副边输出三相交流电经功率单元的三相二极管整流后,经滤波电容形成平直的直流电,再经过4个igbt构成的h型单相逆变桥,实行pwm控制。逆变器输出采用多电平移相式pwm技术,同一相的功率单元,输出相同幅值和相位的基波电压,但串联各单元的载波之间互相错开一定电角度,实现多电平pwm,叠加以后输出电压的等效开关频率和电平数大大增加,输出电压非常接近正弦波。每个功率单元脉冲控制都是采用spwm控制,逆变器的控制脉冲波形,由参考正弦波和三角波比较产生。

[page]3 非pwm(npwm)功率单元

  3.1 非pwm功率单元的电路及特点

  如上所述,普通pwm功率单元已经很好的完成了接近正弦波的输出,但是这种pwm方式还是无法避免电网污染和电磁干扰现象。综合过去知识沉淀,在普通功率单元结构的基础上提出了独特的一种功率单元实现,其结构如图3所示。

  非pwm功率单元由如下两部分构成:输入单元部分由晶闸管三相可控整流桥所组成,输出单元部分由igbt构成的逆变桥所组成,其输出电压状态为1,0,-1。如果每相由五个单元叠加而成那么就可以产生11种不同的电压等级,由此,完美无谐波系统变频就可以合成更加完美的正弦输出电压波形。

  该功率单元结构的特点是:

  (1) 输出电压的幅值的调节是由反并联可逆逻辑无环流可控整流电路来实现。(ud=2.34u2cosα)

  (2) 输出电压的频率的变化是由逆变单元模块来实现的,整个系统将调压和调频分开来进行,但变频又变压的原理保持不变。

  (3) 反并联可逆逻辑无环流整流侧可自动实现能量回馈,达到节省能源的目的。

  (4)由于输出逆变模块的开关频率不会高于输出频率,因此避免了传统的pwm方式所造成的电网污染和电磁干扰现象,这将预示着一种新型的节能绿色高压变频器的诞生-非pwm(npwm)功率单元高压变频器。

  采用反并联可逆逻辑无环流整流,不但可以很好的完成整流功能,还能实现能量回馈,把多余的能量回送到电网,节省了能源消耗。由于这种无环流可逆系统采用控制原则是两组桥在任意时刻只有一组投入工作,另一组关断,所以在两组桥之间不存在环流。变流器之间的切换过程是由逻辑单元控制的,因此称为逻辑无环流系统。

  矩形波调制原理与原来三角波调制类似,在正弦波作调制波的情况下,把原来的三角波换成了矩形波做载波。以一个功率单元为例,用矩形波去截同频率的正弦波,当正弦波的幅值大于矩形波幅值时,使之有电压输出,其余时间内使输出为零,即可得到一个功率单元的输出。用9个单元的输出相叠加,即可得到完美接近正弦波的电压输出。

  输入侧隔离变压器二次绕组经过移相降压,为每个功率单元提供独立电源,对6kv而言相当于30脉冲不可控整流输入,消除了大部分由单个功率单元所引起的谐波电流,极大地抑制了网侧谐波的产生;变频器引起的网侧谐波含量可满足《电能质量公用电网谐波》对谐波含量的最严格要求,无需安装输入滤波器,并保护周边设备免受谐波干扰。正常调速范围内功率因数大于0.95,无需功率因数补偿电容;采用矩形波做载波,大大削弱了输出谐波含量,输出波形接近完美正弦波,无需输出滤波器装置,就可使总谐波含量(thd)降低到2%以下。

  采用反并联电路虽然增加了晶闸管的数量。看似提高了成本,但是由于逆变部分采用与正弦波同频率的矩形波做载波,大大降低了管子的频率,在批量生产的情况下,又可以用低频开关管来替代高价的igbt,因此降低了成本;由于无高频,省略了高频保护电路,除了可以减小电网污染以外,还降低了成本。所以这种设计不但可以弥补由增加晶闸管造成的成本增加,还可以进一步降低总成本。

 

[page]  3.2 非pwm功率单元的计算机仿真

  普通高压变频器中每个单元输出的pwm波的调制机理是由正弦波作信号波,三角波作载波调制产生的。而非pwm功率的实现思想则迥然不同,在每个单元采用频率不变,幅值变化的矩形波作载波,来调制输出所需要的非pwm波。

  我们对额定输出电压为10kv的变频器进行了计算机仿真,每相由九个额定电压为650v的功率单元串联而成,输出相电压最高可达5850v,线电压可达10kv左右。非pwm功率单元的仿真电路如图4所示,仿真结果如图5所示。

  由仿真结果可以看出,这种新型非pwm功率单元可以输出较之普通pwm功率单元更加完美的正弦波形。

[page]  3.3 非pwm功率单元的实现方法

  控制系统中采用数字信号处理器dsp。dsp是一种具有特殊结构的微处理器,dsp芯片的内部采用程序区和数据区分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的dsp指令,可以用来快速地实现各种数字信号处理算法。系统控制电路中的主控部件采用tms320lf2407dsp芯片,多片dsp协同作业,通过控制器局域网(can)进行相互间的通讯联系,完成控制参数的传递,从而实现移相式npwm脉冲的触发,并且能够对各种故障中断做出及时地处理。

  以额定输出电压为10kv的高压变频器为例,整个控制系统的实现方法如下:

  系统采用的是主从多cpu控制系统。控制电路组成如图6所示。

  假设实际主电路的每相为5单元串联结构,整个电路共有15个功率单元。对于各相中同一位置的3个功率单元,采用1片dsp进行控制,这样15个功率单元可以由5片dsp构成5个对称的子系统。再使用1片dsp作为主控芯片,对控制信号进行采样和运算以及必要的信息处理。对于每个子系统中的三个功率单元使用相同的载波信号,正弦调制波信号互差120°电角度;每相的5个功率单元共用1个正弦调制波信号。子系统时钟由主控单元给出,通过光纤传送,从而保证整个系统的时钟一致,不至于发生漂移。子控芯片根据给定的步长参数可以确定正弦调制波的频率,从而可以决定输出电压的频率。子控制系统同时还要对功率单元进行必要的保护。由于变频器系统的保护信号比较多,并且保护方式也不尽相同,在本设计中主要考虑的保护信号有:过流、过压、欠压和过热。在这4种典型故障情况下,子cpu将封锁其输出的全部npwm触发信号,同时向主cpu发出必要的信息,使其能够对发生的情况做出必要的响应和处理,并通过人机界面显示出故障情况。主控dsp主要负责对给定信号以及反馈信号的采样、实时计算、v/f查表求值、pi算法控制等等,并且通过数据和地址总线以及串行通讯接口与人机接口系统相连,从而完成信息的接收和显示。同时它还要对由子系统发送的信息进行分析和处理,监测系统的运行状况。同时,主控芯片将对电机回路进行必要的保护和处理。这样可以更加充分地发挥dsp处理器的强大的运算和实时处理能力。

  主控芯片与从控芯片通过控制器局域网(can)相互连接。从而完成相互之间的一些必要的信息和数据的传送。在本系统中涉及到的需要传送的信息和数据主要有:调制频率信号、调制深度系数、比较输出控制字、保护中断信息以及初始化设定值信息等等。

  采用这种控制电路,既保证了系统的功能实现和稳定运行,又有效地节约了设备成本,并且具有较强的功能扩展和升级能力。

4 结束语

  与传统的高压变频器pwm功率单元相比,非pwm功率单元在输入、输出波形和控制性能等方面有了进一步的完善,在抗电网污染和抗电磁干扰方面更较之pwm功率单元更胜一筹,具有较高的市场应用价值。

关键字:PWM功率  谐波  高压  变频器 编辑:冰封 引用地址:新型非PWM功率单元在完美无谐波高压变频器中的应用

上一篇:一种具有能量回馈功能的级联型高压变频器的仿真研究
下一篇:降低电极接地电阻的方法

推荐阅读最新更新时间:2023-10-18 16:24

纬湃科技宣布最新成果,高压电机技术突破,2023年投入量产
日前,纬湃科技宣布其800伏高压电机技术再次突破新的征程:此外,纬湃科技将为中国某头部主机厂800伏电动汽车平台动力系统配套生产电机定转子,公司将在天津工厂投入全新的产线,并有望在2023年投入量产。 据了解,800伏技术有更快的充电速度、更高的整体能效以及更具吸引力的驾驶性能,有望在汽车技术转型中脱颖而出。纬湃科技是全球领先的汽车驱动技术和电气化解决方案供应商,搭载800伏电机技术的第四代高压轴驱系统平台可提供不同层次的电压选择。 先进的碳化硅技术为新型800伏电机提供了更高效率,8层扁线发卡技术设计则确保了最佳的铜填充系数,从而使紧凑型的电机发挥更高的功率密度。
[汽车电子]
纬湃科技宣布最新成果,<font color='red'>高压</font>电机技术突破,2023年投入量产
关于电压型变频器直流环节滤波电容的计算方法
  虽然利用整流电路可以将交流电变换成直流电,但是在三相电路中这种直流电压或电流含有频率为电源频率6倍的电压或电流纹波。此外,变频器逆变电路也将因输出和载波频率等原因而产生纹波电压或电流,并反过来影响直流电压或电流的品质。因此,为了保证逆变电路和控制电路能够得到高质量的直流电压或电流,必须对直流电压或电流进行滤波,以减少电压或电流的脉动。   直流环节是指插在直流电源和逆变电路之间的滤波电路,其结构的差异将对变换器的性能产生不同的影响:凡是采用电感式结构,其输入电流纹波较小,类似电流源性质;凡是采用电容式结构,其输入端电压纹波较小,类似电压源性质。   对电压型变频器米说,整流电路的输出为直流电压,直流中间电路则通过大电解
[电源管理]
关于电压型<font color='red'>变频器</font>直流环节滤波电容的计算方法
优势比较:太阳能LED路灯VS高压钠灯
 21世纪以来,工业的发展远远超越能源的消耗速度,太阳能发电将成为新型能源来取代传统能源的首选,“节能减排、绿色 照明 ”,“十城万盏”,新农村建设,“太阳能建筑一体化”等项目的推行更促使了新能源、 LED 工业持续高速的发展,成为绿色节能工程中低投入、高产出、高附加值的新兴高新技术产业。 太阳能 LED路灯 和传统高压钠灯路灯的比较   那么剩下的问题只有一个,就是太阳能LED路灯在性价比上和传统的高压钠灯比较又如何呢?可以说太阳能LED路灯有以下几方面的优点:   1.太阳能LED路灯采用的是清洁的可再生能源,相比于传统的高压钠灯可以减少二氧化碳排放量。假如2009年的2000万盏路灯全部改用太阳能LED路灯以后,可以减少
[电源管理]
优势比较:太阳能LED路灯VS<font color='red'>高压</font>钠灯
变频器的微浪涌电压抑制技术
        0 引言   随着世界性的环境保护意识的提高和节能要求的迅速发展,特别是在工业用电机控制中,以电力半导体组件组装的变频器正成为应用的主流。   但当变频器和电机之间的接线距离很长时,电机接线端因变频器的高速开关过程引起的微浪涌电压,给电机的绝缘带来影响,造成电机损伤。这里把浪涌称为微浪涌是为了区别于雷电等突发的强大浪涌,微浪涌从示波器上看是密集的、连续存在的、很窄的尖峰电压。   本文对微浪涌电压的发生机理及其对电机的影响作了分析,介绍了抑制微浪涌电压的技术,以及最近出现的衰减微浪涌电压的产品和采用细线径传输为特征的微浪涌抑制组件的工作原理等。 1 微浪涌电压的发生机理   1.1 变频器的输出电压
[电源管理]
<font color='red'>变频器</font>的微浪涌电压抑制技术
基于RTDS的超高压线路保护装置的试验研究与分析
0  引言     电力系统数字仿真具有不受原型系统规模和结构复杂性的限制,能够保证被研究、试验系统的安全性和具有良好的经济性、方便性等许多优点,正被越来越多的电力科技工作者所关注,并且在电力系统规划和设计、装置的研究开发、运行人员培训等领域发挥着重要的作用 。众所周知,电力系统保护装置,尤其是高压/超高压电网的保护装置,需要足够的可靠性,并能适应于电力系统的各种工况,在任何故障类型下具有充分的灵敏度,来快速、准确的切除故障,以确保电网稳定、设备安全。但对于要求如此苛刻的装置,在现场中仅在很短的时间动作外,长期处于不动作状态,所以可供参考的实际故障经验非常少,至于实际电网试验机会则更少。从而导致了高压电网保护装置产品一直是一个高技术
[嵌入式]
示波器高压电源的工作原理分析
通用示波器在通信、电子类高校的基础实验室中是一种使用频率和覆盖面都很高的电子仪器。高压电源是示波器中的关键电路部件,也是示披器中故障发生率较高的部位。因此,在示波器维修工作中正确理解它的工作原理、快速准确寻找故障点,对确保示波器正常工作至关重要。本文中所讨论的高压电源电路性能好、结构新颖,在许多新型进口和国产通用示波器(例如,日本菊水公司COS5020、韩国Goldstar公司OS-7040、台湾GW公司GOS6xxxG系列、上海无线电21厂XJ43xx系列、西安红华厂HH4310等型号)中都广泛采用。而这些示波器在许多高校实验室中有较高的保有量。因此,对它的故障分析具有普遍意义。   1、高压电源工作原理   高压电源的主
[测试测量]
示波器<font color='red'>高压</font>电源的工作原理分析
造纸系统变频器常见故障及处理
引言   交流传动以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案。现代变频调速基本上都采用16 位或32 位单片机作为控制核心,从而实现了全数字化控制,调速性能与直流调速基本相近。但使用变频器时,其维护工作要比直流调速复杂,一旦发生故障,工矿企业的普通技术人员就很难处理,这里就 变频器 常见的故障分析一下故障产生的原因及处理方法。 1 参数设置类故障   变频器在使用中是否能满足传动系统的控制要求,变频器的参数设置非常重要,如参数设置不正确,轻者系统控制效果不好,重者系统不能正常运行。   1.1 参数设置   对于一台新购置的变频器,一般出厂时,厂家对每一个参数都有一个默认值。在这些参数值的情况下
[嵌入式]
变频器出现漏电问题分析
有的现场使用变频器控制电机会出现漏电问题,漏电电压有几十伏到200伏不等,在这里针对此故障的原因进行理论的分析。我们都知道电动机的三相定子绕组流过电流产生旋转磁场,根据磁电感应的原理,电动机的外壳就会产生感应电动势,此电动势的大小就取决于变频器IGBT的开关频率的大小,由于高性能的控制要求高的开关频率,其开关速度很快,则DV/DT偏大,同时这个感应电动势就偏大,人触摸上就有电击的感觉。理论上IGBT的开关速度越快,电机外壳上的感应电动势就越高,而变频器对电机的控制精度和响应就越高,人触摸之后被电的感觉就越高,反之,IGBT的开关频率慢,感应电就小,人触摸的感觉就小,所以国内的低端变频器设计的开关频率偏低,控制电机后感应电小,人摸上
[嵌入式]
<font color='red'>变频器</font>出现漏电问题分析
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved