开关稳压器电流检测的一种新方法介绍

最新更新时间:2012-03-03来源: 21IC中国电子网关键字:开关稳压器  电流检测 手机看文章 扫描二维码
随时随地手机看文章

 0 引言

  随着电子产品向小型化、便携化的趋势发展,单片集成的高效、低电源电压DC-DC变换器被广泛应用。在许多电源管理IC中都用到了电流检测电路。

      在电流模式PWM控制DC-DC变换器中,


 

  式中:μ为沟道载流子迁移率;Cox为单位面积的栅电容;VTH为MOSFET的开启电压。

  如图1所示,已知MOSFET的等效电阻,可以通过检测MOSFET漏源之间的电压来检测开关电流。

  

 

  这种技术理论上很完美,它没有引入任何额外的功率损耗,不会影响芯片的效率,因而很实用。但是这种技术存在检测精度太低的致命缺点:

  (1)MOSFET的RDS本身就是非线性的。

  (2)无论是芯片内部还是外部的MOSFET,其RDS受μ,Cox,VTH影响很大。

  (3)MOSFET的RDS随温度呈指数规律变化(27~100℃变化量为35%)。

  可看出,这种检测技术受工艺、温度的影响很大,其误差在-50%~+100%。但是因为该电流检测电路简单,且没有任何额外的功耗,故可以用在对电流检测精度不高的情况下,如DC-DC稳压器的过流保护。

[page]  1.2 使用检测场效应晶体管(SENSEFET)

  这种电流检测技术在实际的工程应用中较为普遍。它的设计思想是:如图2在功率MOSFET两端并联一个电流检测FET,检测FET的有效宽度W明显比功率MOSFET要小很多。功率MOSFET的有效宽度W应是检测FET的100倍以上(假设两者的有效长度相等,下同),以此来保证检测FET所带来的额外功率损耗尽可能的小。节点S和M的电流应该相等,以此来避免由于FET沟道长度效应所引起的电流镜像不准确。

  

 

  在节点S和M电位相等的情况下,流过检测FET的电流,IS为功率MOSFET电流IM的1/N(N为功率FET和检测FET的宽度之比),IS的值即可反映IM的大小。

  1.3 检测场效应晶体管和检测电阻相结合

  如图3所示,这种检测技术是上一种的改进形式,只不过它的检测器件不是FET而是小电阻。在这种检测电路中检测小电阻的阻值相对来说比检测FET的RDS要精确很多,其检测精度也相对来说要高些,而且无需专门电路来保证功率FET和检测FET漏端的电压相等,降低了设计难度,但是其代价就是检测小电阻所带来的额外功率损耗比第一种检测技术的1/N2还要小(N为功率FET和检测FET的宽度之比)。

  

 

  此技术的缺点在于,由于M1,M3的VDS不相等(考虑VDS对IDS的影响),IM与IS之比并不严格等于N,但这个偏差相对来说是很小的,在工程中N应尽可能的大,RSENSE应尽可能的小。在高效的、低压输出、大负载应用环境中,就可以采用这种检测技术。

[page]  2 新型的电流检测方法

  在图4中,N_DRV为BUCK稳压器的同步管栅极驱动信号,N_DRV_DC为N_DRV经过1个三阶RC低通滤波器之后滤出的直流分量,并且该直流分量为比较器的一端输入,比较器的另一端输入为一基准电压值BIAS,,比较器的输出LA28(数字信号,输出到芯片的控制逻辑)为DC-DC负载电流状态检测信号。

  

该电流检测电路的作用如下:

  在一个稳压器芯片中,既包括一个DC-DC(BLYCK),又包括一个LDO,中载和重载时工作于PWM模式,轻载时(约为3 mA以下)工作于LD0下,而本文提出电流检测电路的作用是:当其负载电流小于一定值时(此时开关稳压器处于DCM模式下),LA28电平跳遍,实现PWM模式向LD0模式的模式切换。

  这里需要注意的是,如果对输出负载电流直接进行检测或是通过将电感电流取平均值的方式来检测输出负载电流,则将会带来电路实现上的困难。而在此提出的这种检测方法却不存在这个问题。

  该架构图是DC-DC负载电流状态检测电路的等效图。其作用是当DC-DC负载电流低于3 mA时,其输出信号LA28由高变低,从而实现PWM模式向LD0的切换。它的基本原理是利用DCM模式下(当负载电流为3 mA时,DC-DC处于DCM模式下)负载电流与开关管栅极驱动信号N_DRV的关系,通过检测N_DRV来监控输出负载电流的变化,从而实现当负载电流低于3 mA时PWM模式向LDO的切换。

  下面将用图5来说明该电路检测负载电流的原理。

  图5是DCM模式下电感电流IL与同步管栅极驱动信号N_DRV的波形图。

  

 

  在该图中,电感电流的上升斜率为

,而下降斜率为

,则有:

 

[page]  此时:

  

 

  又由于每个周期通过电感输出到负载的电荷量是不变的,故有

。其中:T为开关周期;IOUT为输出负载电流。

 

  从上面几式得:

  

 

  故有:

  

 

  现在再来分析图4,在频域内,从N_DRV到N_DRV_DC的系统传递函数为:

  

 

  故图4中的R与C组成的网络是1个三阶的RC低通滤波器。下面计算N_DRV_DC,从t=O接入脉宽为△T,周期为T的周期性矩形脉冲信号N_DRV,其复频域的象函数为

 

  故N_DRV_DC的象函数为:

  

 

  需要注意的是,在设计三阶RC低通滤波器时,其带宽应设置得远小于DC-DC的振荡器频率(即N_DRV的频率),以保证很好地滤出N_DRV中的高频分量;但也不宜设置得太小,否则所使用的电阻和电容将会比较大。

[page]  当DC-DC负载电流减小,N_DRV_DC也会减小,若减小至N_DRV_DC=BIAS3时,比较器开始由高变低,芯片将从PWM模式进入LD0模式。设此时的负载电流为ILDO(ON),则:

  

 

  即:

  

 

  联立式(1)和式(2)得:

  

由上式可知,DC-DC向LDO的切换阈值ILDO(ON)与电感值L成反比。

  最终的电流检测实现电路如图6所示。由于该电路原理比较简单,分析从略。

  

 

  3 仿真结果数据

  仿真结果数据如表l所示。TA=25℃,L=2.2μH。

  

 

  4 结语

  提出了一种开关稳压器电流检测的新方法,通过检测DCM模式下同步管栅极驱动信号,实现对输出负载电流的检测,从而得出芯片从PWM模式向LDO模式的切换。由此解决了通过检测电感平均电流而使的电路实现的困难。经过HSpice仿真验证,其仅消耗5μA的静态电流。该种检测方法主要适用于需要对开关稳压器的DCM模式下负载电流进行检测的场合。

 

关键字:开关稳压器  电流检测 编辑:冰封 引用地址:开关稳压器电流检测的一种新方法介绍

上一篇:开关电容滤波器前置、后置滤波器的设计
下一篇:如何测量电容式触摸屏的实际信噪比

推荐阅读最新更新时间:2023-10-18 16:27

内置MOSFET降压型开关稳压器NJW1933
日本无线株式会社(总部:东京都中央区 代表取缔役社长:小仓 良)开发出了一款600mA, 500kHz的小型封装降压型开关稳压器 NJW1933,该稳压器最适于逆变器、程控器等产业设备电源及汽车电子配件。此产品已经开始进入生产阶段。   NJW1933 降压型开关稳压器有内置MOSFET,输入电压范围很宽从4.5V到40V。因为内置有电流控制方式的相位补偿电路,所以最少限度的外接部件就能够实现降压应用。并且,补偿电路的最佳化能够使用外接陶瓷电容器,工作频率很高能够使用小型电感。   NJW1933 采用了小型SOT-23-6封装,及能够使用小型电感和陶瓷电容器,这些特点有利于节省实装面积,使各种电源小型化。
[模拟电子]
内置MOSFET降压型<font color='red'>开关稳压器</font>NJW1933
基于开关稳压器的汽车导航系统电源设计
  现代汽车不断增加越来越复杂的电子系统。市场调研公司 Allied Business Intelligence 预测,到 2007 年,汽车半导体市场将增长到一年超过 170 亿美元,而去年这一市场为 123 亿美元。另一家市场调研公司 Strategy Analytics 也持有同样乐观的看法:目前在一般的汽车中,电子系统成本占总成本的 20% 多,但是到 2008 年,这一比例将增长到超过 30%。防撞雷达、自适应巡航控制、轮胎压力监视、导航系统、免提蜂窝电话和其它无线连接以及生物识别访问系统都是这些电子系统的具体例子。   不过,一个有极大增长的领域是基于 DVD/HDD 的导航系统。这类系统 1997 年推出,预计
[嵌入式]
为高压系统选择合适的电流检测技术至关重要
从自动驾驶汽车到飞机再到工厂车间,电气化和自动化的进步正在迅速改变我们的世界。由于性能和可靠性的提高,以及总寿命成本的降低,以前的手动、机械或混合系统正在向全自动化和电气化方向发展。事实上,我们正处于聚焦于自动化和智能监控的第四次工业革命,也称为工业4.0时代。随着电气化革命的全面展开,高压系统在实现更高的效率和性能方面的作用越来越突出。 在高压系统中,信号和电源隔离有助于保护人员和关键电路免受高压交流或直流电源和负载的影响。随着系统集成了更多的电气功能,人们目前正在努力进一步缩小这些系统的体积。在缩小体积的同时如何降低系统成本和设计复杂度,并维持系统的高性能,对工程师来讲是一个全新的挑战。 电流检测通常用于高压系统中的过
[测试测量]
为高压系统选择合适的<font color='red'>电流检测</font>技术至关重要
具有电流检测功能的电路的设计方案
1 引言 通常所说的电流检测是用来检测某部件、或者导线通过的电流,一般用互感器、分流器等将电流信号转化成电压信号,然后再对其进行处理放大,作为后面电路保护、检测使用。目前,已经有很多不同的电流检测技术已被公布或实施。其中常用的直流电流检测方法主要是通过串联电阻或者基于霍尔效应原理进行,在通常情况下被测电流信号较大,串联电阻对输入电流信号的影响可以忽略不计,但随着科技发展的需要,被检测信号日渐减小,在系统电路中如果直接串联电阻,会影响前级电路工作,导致被测电流信号的大小发生改变,此时这一影响已经不能再被忽略。 为了检测小电流信号,同时实现将输入的电流信号缩小的功能,以便满足后续处理电路的要求,本文给出了一种不同于传统电流检测电路中常
[电源管理]
具有<font color='red'>电流检测</font>功能的电路的设计方案
线性稳压器与开关稳压器的联系和区别
稳压器广泛应用于各个领域,国际上制定严格的高能效法规与标准,提升电源能效,降低能耗,以期减轻对环境的压力。 线性稳压器和开关稳压器是比较常用,他们之间有什么联系和区别呢?在日常维护中又应该注意哪些方面呢?下面就一起来了解和学习。 一、线性稳压器和开关稳压器的不同概念 1.什么是线性稳压器? 线 性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的 LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP.这种晶体管允许饱和,所以稳压器可
[电源管理]
线性稳压器与<font color='red'>开关稳压器</font>的联系和区别
EMI兼容的汽车开关稳压器设计
不需要完全了解复杂的EMI,即可轻松设计EMI兼容的汽车开关稳压器。本文将以没有复杂数学运算的直觉方式,探讨成功实现开关稳压器的基本因素,主要包括:斜率(slew rate)控制、滤波器设计、元件选用、配置、噪声扩散及屏蔽。   汽车本身不断变化,驱动汽车的电子装置也是如此。其中最显著的莫过于插电式电动汽车(PEV),它们采用300V至400V的锂离子电池和三相推进马达取代取代燃气罐和内燃机。精密的电池组电量监控、再生制动系统及复杂的传输控制可将电池使用时间优化,使得电池需要充电的频率减少。此外,现今的电动汽车或其它种类的汽车都具有许多可提升性能、安全、便利性及舒适感的电子模块。许多中档车均配备先进的全球定位系统(G
[嵌入式]
EMI兼容的汽车<font color='red'>开关稳压器</font>设计
电流模式控制DC/DC转换器中的电流检测电路设计
电流检测电路是电流模式控制所必需的, 通过检测功率开关管上的电流,然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号, 再与误差放大器的输出进行比较,从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种, 常见的有两种,一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流, 并联检测管复制比例电流的检测方法,又有两种主要的实现结构, 一种是采用运放的结构, 另一种是利用反馈的方式。如果采用运放, 显然会增加电路的复杂性,而且也会增加功耗。本文根据具有反馈控制电流源的原理来设计电流检测电路中的反馈网络。 1 反馈控制电流源的原理 电路原理图及电流源动态特性曲线如
[测试测量]
电流模式控制DC/DC转换器中的<font color='red'>电流检测</font>电路设计
3.5A、36V 降压型开关稳压器突发模式仅耗75uA 静态电流
2007 年 8 月 14 日 - 北京 - 凌力尔特公司( Linear Technology Corporation )推出 3.5A 、 36V 降压型开关稳压器 LT3680 ,该器件能以突发模式( Burst Mode )工作,以保持静态电流低于 75uA 。 LT3680 在 3.6V 至 36V 的 V IN 范围内工作,非常适用于汽车应用中的负载突降和冷车发动情况。其 4.6A 内部开关可以在电压低至 0.79V 时提供高达 3.5A 的连续输出电流。 LT3680 的突发模式工作具有超低静态电
[新品]
热门资源推荐
热门放大器推荐
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved