低电压高效率微波功率放大器研究与设计

最新更新时间:2012-03-20来源: 21IC中国电子网关键字:功率放大器  高效率  低电压  双极性晶体管 手机看文章 扫描二维码
随时随地手机看文章

   功率放大器设计的好坏直接影响着整个系统的性能。按照其工作状态一般可以分为A、B、C类,以及类似于开关工作状态的D、E、F类等。或根据放大器输出功率的大小,将放大器设计分为小信号设计和大信号设计。利用谐波平衡负载牵引法进行非线性电路设计,是目前较为有效的一种方法。该方法已经广泛应用到大信号器件特性的提取以及非线性电路设计中。
    但是,对于工作在低电压的微波放大器设计,如何更好地通过匹配电路提高效率和线性度却少有报道。小信号法在小信号时效果较好,不适用于大信号分析。负载牵引法输出功率和效率都较好,但线性度较差。文中结合小信号法和负载牵引法的各自特点,提出输入匹配电路采用小信号匹配法,输出匹配电路采用负载牵引法,得到较好的性能。

1 工作原理
    小信号法又称增益匹配法,放大器工作在线性状态下,给定放大器的增益,在Smith圆图中,做出输入输出的增益圆,得出增益点的源和负载反射系数,然后根据源和负载反射系数做出输入输出匹配电路。
    随着输入功率的增加,放大器进入非线性区域,产生一系列失真,按照小信号法的分析结果不再适用于大信号状态。
    谐波平衡负载牵引法是通过不断改变晶体管负载阻抗,测试功放的输出功率和效率。在最大输出功率和最大效率之间取一个阻抗值作为输出阻抗。同理,改变源阻抗,在最大输出功率和最大效率之间取一个值作为输入阻抗。
    由于谐波平衡负载牵引法是按照输出功率和效率设计匹配电路,所以其小信号时的增益一般不如小信号法高,而且线性度较差。根据小信号法增益高、谐波平衡负载牵引法输出功率和效率高的特点,文中输入端采用小信号法匹配,输出端采用谐波平衡负载牵引法匹配设计了一款可以用于GSM通信终端发射的功率放大器,并对采用3种不同情况的输出功率、效率、线性度进行了比较。

2 放大器设计
    文中选用NEC公司的NE662M04 NPN晶体管,静态工作点为:工作电压2V,基极电为300μA时,工作电流20mA。
2.1 小信号法
    用安捷伦公司ADS设计软件,采用小信号分析方法,得出最大增益为17.384dB。输入输出增益圆如图1,图2所示。输入阻抗5.858+ j2.288 Ω,输出阻抗43.404+j52.364Ω。输入功率为0 dBm时,输出功率为12.76 dBm,效率为23.57%,如图5和图6所示。


2.2 负载牵引法
    首先通过负载牵引法,等输出功率圆如图3所示。输出功率最大点的输出阻抗为35.858+j52.288Ω。将放大器的负载阻抗设为该值,再使用源牵引法,等输出功率圆如图4所示。最大输出功率点的输入阻抗为7.258+j2.689 Ω。输入功率为0 dBm时,输出功率为15.58 dBm,效率为47.68%,带外功率抑制比为-39 dBe(偏离中心频率60MHz处)。如图5~图7所示。

                


2.3 小信号法和负载牵引法相结合
    输入端采用小信号匹配法,得到和图1一样的等增益圆,输人阻抗为5.858+j2.288Ω。输出端用负载牵引法得到输出阻抗为53.46l+ j62.314Ω。当输入功率为0 dBm时,输出功率为15.43 dBm,效率为50.34%,带外功率抑制比为-43.2 dBe。如图5~图7所示。

 


    比较图5~图7可以看出,当工作在大信号时,文中所用方法和负载牵引法相比:输出功率相近、工作效率高、邻信道功率抑制比好。

3 结束语
    针对工作在低电压状态的微波放大器,对小信号匹配法和负载牵引进行了分析,并结合两种方法的各自特点,提出输入匹配采用小信号法,输出匹配采用负载牵引法。并将这3种匹配方法进行比较,设计了一款低电压功率放大器,仿真实验证明,文中所用方法输出功率和效率较高、线性度较好。

关键字:功率放大器  高效率  低电压  双极性晶体管 编辑:冰封 引用地址:低电压高效率微波功率放大器研究与设计

上一篇:可程控核能谱信号放大器设计
下一篇:快捷式8位高速A-D转换器电路及原理介绍

推荐阅读最新更新时间:2023-10-18 16:32

一种低电压低静态电流LDO的电路设计(一)
随着过去几十年里掌上智能终端快速发展,低压差的线性稳压器(Low Drop-out Regulator,LDO)因其具有低功耗、高的电源抑制比、体积小、电路设计简单等优点得到大量应用。LDO大部分时间工作在低负载应用,因此,其在低负载情况下的静态电流消耗决定着电池的寿命。当今的LDO发展趋势是低电压、低静态电流来延长电池使用寿命。然而,低静态电流会导致不稳定性,带来大的输出电压暂态变化,必须在静态电流和输出暂态特性进行合理的折中。相比于传统LDO采用分立结构的带隙基准电压源和误差放大器,本文给出一种创新结构的LDO,将带隙基准电压源和误差放大器两个模块合二为一,因此更容易实现低静态电流消耗,低暂态电压变化。 1 LDO电路分析
[电源管理]
一种<font color='red'>低电压</font>低静态电流LDO的电路设计(一)
功率放大器基于声振响应法的香梨硬度无损检测
实验名称:功率放大器基于声振响应法的香梨硬度无损检测 实验目的:使用无损检测的方法检测判别香梨内部品质的差异 试验设备: 香梨、试验台架、压电梁式传感器、ATA-2041功率放大器、振动控制与动态信号采集分析仪、计算机等组成。 实验内容: 该研究搭建了由压电梁式传感器进行信号激励和感测的检测装置,分析了装置信号检测的稳定性,提取了香梨共振频率和声速并进行香梨硬度评估,然后将这两响应参数的评估硬度与香梨硬度的M-T穿刺法(Magness-Taylor)测量结果进行线性回归分析,以构建香梨硬度的检测模型。 实验过程: (1)测试台的搭建 (2)信号的采集和处理 依据声振试验通常采用力锤对水果试样进行激励,为降低信
[测试测量]
<font color='red'>功率放大器</font>基于声振响应法的香梨硬度无损检测
功率放大器在电力载波通信中的设计应用
电力载波通信(powerlinecomrnunication,PLC)是电力系统特有的通信方式,电力载波通信是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络,只要有电线,就能进行数据传递。现在,PLC除了在远程抄表上有所应用外,随着家庭智能系统这个话题的兴起,也给PLC带来了一个新的舞台。在 电力载波 系统输出级,需要对调制好的信号进行放大,本文使用共射放大电路和OTL电路分别对电压和电流进行放大,为了控制输出信号的谐波失真率,对偏置电路和反馈电路进行了改进,同时在设计中考虑温度影响,使电路可以在室外环境中正常工作。    1 放大器的设计要求和基本电路   根据国家电网
[电源管理]
<font color='red'>功率放大器</font>在电力载波通信中的设计应用
PIC18f4520禁止低电压编程问题
PIC18f4520具有低电压编程模式,一般高压编程的电压为13V,而低压编程的电压只有5V,但是低电压编程会占用芯片的PGM/RB5,这样烧写的芯片必须PGM/RB5接低电平芯片才能工作 大部分在线编程也都是用的高压编程,特别是PIC专用编程器的在线编程,一定是用的高压编程,这时必须将低压编程使能禁止掉,否则你的PGM/RB5就要接地芯片才能正常工作了。低电压编程基本上用不到,只在一些编程器无法提供高压的情况下使用。 实际中发现低压编程会使外部中断无法正常使用,如果你还使用了RB5引脚的话会使系统运行不正常,所以在配置字_CONFIG()中会加入LVPDIS低电压禁止模式。
[单片机]
雄鹰功率放大器电压放大级电路改进
雄鹰功率放大器电路采用全互补对称推挽电路,具有性能稳定、动态范围较大等优点,而且价格低廉,用料质量扎实,故对它的改进很有价值。使用的FD-555型放大器,其音色较好,低频效果也不错,但在听一些低音深厚的歌曲时,还是感到音声较清,底气不足的感觉,故决定对电压放大级电路进行改进,改进后的电路如下图所示。即在电压放大级后面增加VT1、VT2作射极输出,分别与5551、5401组成复合放大器,以提高本级的电流输出能力,这比在输出级用三级达林顿管要稳定合理,可谓一举两得,即增加了电路的线性又增添了一级缓冲。VT1、VT2选用中功率音响对管2SD667、2SA647,应严格选择配对。当使本级具有较好的线性,加入电阻R3、R4(选择7~10kΩ)
[模拟电子]
雄鹰<font color='red'>功率放大器</font>电压放大级电路改进
频谱分析基本原理:快速完成高效率测量
  所有电子设计工程师和科学家都曾执行过电气讯号分析,简称讯号分析。透过这项基本量测,他们可洞察讯号细节并获得重要的讯号特性资讯。不过讯号分析的成效,主要取决于量测仪器的效能,而频谱分析仪与向量讯号分析仪是两种最常用于电气讯号分析的测试设备。   频谱分析仪是广为使用的多用途量测工具,可量测输出讯号相较于频率的大小(magnitude),以便瞭解已知和未知讯号的频谱功率。向量讯号分析仪则可同时量测分析仪中频(IF)频宽之输出讯号的大小与相位,并经常用来对已知讯号执行通道内量测,例如误差向量幅度(EVM)、域码功率,及频谱平坦度。过去,频谱分析仪与向量讯号分析仪是两种各自独立的仪器,但随着量测技术不断突飞勐进,量测设备商现在已可
[测试测量]
基于LDMOS的TD-SCDMA射频功率放大器
  TD-SCDMA(时分同步码分多址接入)是第三代移动通信三大主流标准之一,是我国具有自主知识产权的通信标准,它标志着中国在移动通信领域已经进入世界先进行列,目前,TD-SCDMA的商用化进程正在顺利地进行之中 。TD-SCDMA系统采用的是QPSK/8PSK调制,在高速的数据传输应用中,更是采用了如16QAM这样的调制方式。这些调制方式都属于非恒包络调制。由于调制信号在幅度和相位上都存在误差,用单纯的相位误差和频率误差已不足以反映信号的调制精度,于是引入了误差矢量幅度(EVM)指标来衡量传输信号的质量。在现代移动通信系统中,EVM是衡量射频功率放大器性能的重要指标之一 。在频分双工模式的移动通信系统中,由于收发信的频率是不同的
[手机便携]
基于LDMOS的TD-SCDMA射频<font color='red'>功率放大器</font>
英飞凌OptiMOS IPOL稳压器—专为高效率、高密度应用而设计
英飞凌科技股份公司(FSE: IFX / OTCQX: IFNNY)推出搭载恒定导通时间(COT)引擎的全新集成式负载点(IPOL)稳压器系列,其中包含IR3887M、IR3888M和IR3889M。该产品系列专为当今需要高效率和高密度的服务器、基站和电信(在85℃环境温度下运行)以及存储应用而设计。IR3887M是市面上尺寸最小的30 A器件。 结合英飞凌最新一代的FET技术与增强封装技术,它能以4 mm x 5 mm的小巧外形支持30 A电流水平所需的散热性能。 OptiMOS™ IPOL产品系列配备稳定性增强的 COT引擎,支持全陶瓷电容设计,并且无需外部补偿。该产品系列支持4.3 V - 17 V的宽输入电压范围(有外
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved