降低负载功耗的设计小窍门

最新更新时间:2012-03-20来源: 电子发烧友关键字:功率损耗  负载功耗 手机看文章 扫描二维码
随时随地手机看文章

    就电源而言,要想满足当今苛刻的效率要求是颇具挑战性的。光是理解终端设备、电源点评以及管理机构间众多不同的计划和指令就已经很困难了。这些指令包括能源指令、加利福尼亚能源委员会以及欧盟待机效率倡议等。然而,当您快速浏览一下其中任何一项能源节约计划,就会意识到电源设计人员面临的最大的一个挑战就是最小化轻负载和无负载时的功率损耗。下面就介绍五种降低离线反向电源功耗的方法。

    1、挑选一款“绿色”控制器。

    控制器芯片是电源的中枢。选择一款专门为降低轻负载损耗而设计的器件是满足大多数待机要求的关键的第一步。幸运的是,电源控制器芯片厂商通过推出新一代绿色模式控制器以达到对更高能效器件的要求。

    这些绿色模式反向控制器中的大多数都为电流模式控制,因此其控制信号包括了电源输出端上负载大小的信息。轻负载时,该控制器进入一种触发模式。在触发模式期间,这些控制器将会在开启和关闭状态间切换。在关闭状态下,该控制器基本上进入睡眠状态并且电源的功率组件处于空闲状态(不进行切换)。由于在关闭期间不会发生电源传输,因此输出电压开始下降。绿色模式控制器会监控输出电压并最终进入开启状态以补充输出电压。大部分的功率损耗都是发生在开启状态,因此开启-关闭占空比会大大影响整体效率。开启状态通常会持续数百微秒的时间,而就极轻的负载而言关闭状态会根据负载的情况可持续数十毫秒的时间。

    触发模式的一个负面影响是会导致输出端上一个额外的低频率纹波电压。在开启状态时,输出包括了与电源正常开关相关的典型纹波电压。然而,在触发频率下会带来更多的纹波含量,如图 1 所示。由于触发频率很低,用一个 L-C 滤波器对其进行衰减是不切实际的。相反最好通过增加输出电容来减少低频输出电压偏离。

图1 触发模式运行会导致一个低频纹波电压分量

    除了触发模式运行以外,大多数绿色模式控制器都实施了其他能源节约特性,如通过控制器降低静态电压。许多控制器都使用准谐振开关来提升所有负载级别下的效率。准谐振反向电源使用了由变压器漏极电感和寄生电容形成的谐振来以更低的损耗启动。

    2、最小化启动电阻中的损耗

    大多数反向控制器都会自变压器的辅助绕组生成其自己的偏置电源。但是它们需要设法完成初始启动。从传统上来说,这一工作是通过将一个电阻由整流 AC 电压连接至控制器 VCC 引脚实现的。该电阻要足够低才能使该控制器具有足够的电流在最低的 AC 输入电压下开启。该电阻过低会导致过多的功耗并且不利于实现理想的兼容性。

    控制器所需的启动电流通常会罗列在产品说明书电气特性表格的顶端附近。最新的绿色模式控制器将该电流下降低到了 50 μA 以下。就必须要运行在 85V~265V 常见的 AC 输入电压范围的电源而言,使用一个 2 MΩ 的上拉电阻将会确保在低电压时至少 50 μA 的启动电流。在额定的 120V US 线路电压时(通常需要兼容性测试),该电阻仅消耗 13 mW 的功耗。虽然 13 mW 可能不会打破功率预算,但在额定的 230V 欧洲线路电压下,电阻器的功率损耗就会增加 4 倍之多。根据应用和待机期间系统负载的不同,52mW 可能就是一个很大的功耗了。

    一些控制器可以接通一个晶体管提供启动电流,该晶体管在控制器完成一个成功的启动序列后就会关闭。该晶体管会额外增加外部组件数量,有时也会包括在控制器 芯片之中。无论是哪种情况,该额外的高电压晶体管都会增加成本敏感产品的成本。此外,将该晶体管像控制器那样集成到同一个封装中会导致漏电、清除和可靠性问题。

    控制器使用了一种和处理该启动电流相似的方法,其实施了一个与功率金属氧化物半导体场效应晶体管(MOSFET)连接的级联,如图 2 所示。有了级联连接,一个 DC 电压就被施加到了 MOSFET 的栅极,而控制器通过拉低源开启 FET。该控制器可以使用 MOSFET 源连接来获得其初始启动电流。控制器通过在启动期间线性运行 MOSFET 完成上述事宜,无需额外的高压组件,且与控制器无高压连接。这种方法依然需要一个上拉电阻来提供晶体管的栅极电压,但是栅极连接通常需要 10 μA 以下的电流。

图2 级联与MOSFET连接 的控制器大大降低了启动电阻损耗

    3、振铃 

    一次侧 MOSFET 上使用的缓冲和钳位控制电路是降低功耗的另一个主要方面。图3 中常见的 RCD 钳位通过限制 MOSFET 漏极上的电压峰值来降低振铃和避免过压应力。该电压峰值是在 MOSFET 关闭并突然中断主绕组中的电流时由存储在变压器漏极电感中的电能引起的。

图3 通过优化钳位控制电路来降低损耗

    降低钳位电路中电压峰值和损耗的第一步是设计一个具有最小漏极电感的变压器。除此以外,我们还可以增加钳位电阻以进一步降低损耗,但这样做同时还会增加电压峰值幅度。在开关周期的复位阶段,反射的输出电压被外加在会导致更多损耗的钳位电阻两端。使用更高电压的 MOSFET(例如,800V 而非 600V)可为电压峰值提供更多的裕度并且可以使用更大的电阻。然而,更高的电压额定值就要使用更昂贵的 MOSFET 或使用具有更高导通电阻的 MOSFET(其会在较高负载时降低效率)。许多时候我们都必须要在成本、轻负载效率以及额定负载效率之间做一个折衷。在一些专门针对 10W 或低于 10W 应用而设计的电源中可完全去掉钳位电路,从而实现能量的大大节约。当然,EMI 问题可能会限制漏极上所允许的振铃的多少。

    不太明显的是,降低钳位电容还会降低轻负载损耗。当控制器处于触发模式运行时,钳位电路就会在开启状态间进行放电。如果钳位电容太大,那么过多的能量就会存储起来,并在关闭状态期间耗散掉。在一些情况下,钳位电容在下一个开启状态开始前可能不会完全实现放电。将钳位 RC 网络的时间常数设置为开关周期的 10 倍左右是降低该损耗的一个不错的常规法则。

    另一种方法是用齐纳二极管代替 RCD 钳位。齐纳二极管钳位可以降低轻负载时钳位中的损耗。但是,在较高负载时,齐纳二极管钳位与 RCD 钳位相比功耗会高出许多。

    4、将二次稳压电路的功耗降低数毫瓦

    当谈及待机损耗时,所有的电路都会涉及到,其中包括调节输出的误差放大器。图 4 的左侧部分显示了一个 12V 电源的典型稳压电路。常用的 TL431 需要至少 1mA 的静态电流来确保稳压。这是通过 R2 实现的,其通常会导致 15 mW~50 mW 的损耗。R3 和 R4 的电阻分压器对输出电压进行了设置。凭借一个 12.6 kΩ 的串联电阻,这些电阻消耗的功耗便为 11mW。

图4 20 mW~55 mW 损耗的任何部分都可以从稳压电路中去除掉

    图4 的右侧显示了一种调节输出的更高效的方法。用 TLV431 来代替 TL431,这只需要 80μA 的静态电流就可以确保稳压。通过光学耦合器驱动的电流足以为TLV431 供电,因此就可以把 R2 去除掉了。TLV431 的额定最大压为 6.3V,因此 “无经验设计人员设计的由 Q1、R5 和 D1 组成的线性稳压器”电路保护了该器件。R5 和 D1 增加了额外的 3 mW 损耗。将反馈分压器的电阻提高 10 倍我们就可以节省 10 mW 的功耗。

    5、保持精确的偏置电平

    如果您仍然想竭力节约更多电力的话,那么优化控制器的偏置电压可能会让您实现这一目标。该偏置电压必须要足够高,以确保控制器在所有负载条件下都保持开启。此外,电压还必须要足够高以在其被施加到栅极时增强 MOSFET。将偏置电压设置到比控制器和 MOSFET 要求的任何更高电压只会增大额外的损耗。

    大多数控制器都会在触发模式运行时降低其静态电流,这样就减少了静态电流增加偏置电压的相关损耗。典型的静态电流会从正常运行时的 2 – 3mA 降为触发运行时的 200 – 300uA。控制器产品说明书中规定的这一电流不包括 MOSFET 栅极的充放电电流。栅极充电电力等于偏置电压、栅极电荷、开关频率以及触发模式占空比的乘积。由于栅极电荷随偏置电压的增加而增加,不必要的高压会进一步增加损耗。幸运的是,触发模式运行避免了偏置损耗过高。在大多数情况下,最小化偏置电压可节省大约 10 mW~20 mW 的功耗。

    最小化电源轻负载损耗需要仔细检查每一个组件的功率损耗。仅仅几毫瓦的功耗就可以决定一款产品是否符合能源之星标准。实现这些技术可以节省数百毫瓦的产品待机功耗。

关键字:功率损耗  负载功耗 编辑:探路者 引用地址:降低负载功耗的设计小窍门

上一篇:基于MSP430的高功率因数电源设计方案
下一篇:UPS不间断电源中的PFC电路

推荐阅读最新更新时间:2023-10-18 16:32

量身订制的DSP元件设计策略
  许多嵌入式处理器都宣称它们的功耗最低。但是事实上没有一颗元件能在所有的应用中保持最低功耗,因为低功耗的定义与应用环境习习相关,适合某种应用的晶片设计很可能会给另一种应用带来难题。可携式应用多半是根据电池寿命来定义低功耗,这类应用的功能相当广泛,操作模式也千变万化。电信系统元件若要满足应用电源需求,就必须在功率预算范围内处理所要求的通道数目,同时透过封装和电路板将功耗散逸,以确保元件保持在额定温度范围内;另外,这些基础设施应用也很重视最大负载条件下的功耗。因此,为了达到功耗要求,DSP供应商会针对目标应用选择最合适的元件制程、电路设计、电压和频率操作点以及整体架构。   省电技术   DSP供应商有许多技术可以用来降
[嵌入式]
功率计测试通带插入损耗技术介绍
1、摘要 通带插入损耗是无源射频器件(如滤波器,发射合路 器,电缆)的重要指标。而用常见的单台功率计输入输出测试法却不能获得准确的结果。本文解释了产生误差的原因,并描述了一种在工程中极为实用的双功率计测 试法,用这种方法所得的测试结果与在实验室用网络分析仪所得的结果几乎一致。 另外,本文还强调了测试电缆和接头对测试精度的重要作用,而这些问题在工程中是往往容易被忽略的。 2、引言 通 带插入损耗是无源射频器件的主要指标。典型的插入损耗值相对较小,因此用普通的测量方法很难达到实验室的测试精度。在实验室和工厂,通常采用网络分析仪来 测量插入损耗。用常见的无线电发射机作为信号源和射频功率计如BIRD43 或同类的仪器很难精确地测量
[测试测量]
双<font color='red'>功率</font>计测试通带插入<font color='red'>损耗</font>技术介绍
可减少功率损耗和次谐波振荡的LED 背光升压开关
在防止低效的不连续导通模式 (DCM) 升压转换器产生功率损耗和次谐波震荡方面,高功率 LED 设计师们面临挑战。飞兆半导体公司(Fairchild Semiconductor)的 FAN7340 和 FAN73402 单通道升压控制器(带集成式高电压调光 MOSFET)可帮助设计师在高功率照明应用(如适用于 3D 电视和显示器的 LED 背光)方面实现更高的效率、更优质的性能和更好的可靠性,从而克服这些挑战。 这些背光驱动升压开关器件使用带有可编程斜率补偿的电流模式控制拓扑结构来防止次谐波振荡。 这些设备带有内部调光和模拟脉冲宽度调制 (PWM) 设计,可通过快速 PWM 调光响应来克服 DCM 升压转换器的短期
[电源管理]
可减少<font color='red'>功率</font><font color='red'>损耗</font>和次谐波振荡的LED 背光升压开关
RMS检测器集成双向桥,用于测量RF功率和回波损耗
定向耦合器用于检测RF功率,应用广泛,可以出现在信号链中的多个位置。本文探讨ADI公司的新器件ADL5920,其将基于宽带定向耦合器与两个RMS响应检测器集成在一个5 mm×5 mm表贴封装中。相比于要在尺寸和带宽之间艰难取舍的传统分立式定向耦合器,该器件具有明显的优势,尤其是在1 GHz以下的频率。 在线RF功率和回波损耗测量通常利用定向耦合器和RF功率检波器来实现。 图1中,双向耦合器用于无线电或测试测量应用中,以监测发射和反射的RF功率。有时希望将RF功率监测嵌入电路中,一个很好的例子是将两个或更多信号源切换到发射路径(使用RF开关或外部电缆)。 图1.测量RF信号链中的正向和反射功率。 定向耦合器具
[测试测量]
RMS检测器集成双向桥,用于测量RF<font color='red'>功率</font>和回波<font color='red'>损耗</font>
东芝600V小型智能功率器件,有效降低电机功率损耗
东芝电子元件及存储装置株式会社(“东芝”)今日宣布,推出型号为“TPD4162F”的高压智能功率器件(IPD)。该器件采用小型表面贴装封装,设计用于空调、空气净化器和泵等产品中的电机驱动。并计划于今日开始出货。 TPD4162F产品示意图 TPD4162F采用新工艺制造,与东芝当前的IPD产品TPD4152F相比可降低功率损耗约10% 。这有助于为集成该器件的设备降低总体功率损耗。 TPD4162F具有各种控制电路 、输出级安装了IGBT和FRD。其支持从霍尔传感器或者霍尔IC直接驱动带方波输入信号的无刷直流电机,无需PWM控制器IC。与此同时,其各种内置保护电路 还减少了外围电路。此外,采用小型表面贴装封装HSSO
[电源管理]
东芝600V小型智能<font color='red'>功率</font>器件,有效降低电机<font color='red'>功率</font><font color='red'>损耗</font>
使手机实现音响效果的音频播放器
  奥地利微电子发布其新系列媒体播放器 IC 中的首款器件AS3532。该系列旨在为音乐手机实现 Hi-Fi 家用音响设备的音频体验。   AS3532核心采用一款新近开发的音频引擎和作为 ARM 中央可编程单元的协处理器的音频后置处理器。采用全硬线关联的音频引擎可独立完成大多数流行音频压缩格式的解压缩和播放,如 MP3、 WMA 和 AAC 等。   音频后置处理器可作为异步采样率转换器(ASRC)提供具有限制功能的多通道混音器,以及 10 段图形均衡器,并支持 24 位动态范围的 192KHz 采样率高清音频处理。三套 I2S 输出能独立控制立体声扬声器、亚低音扩声器及耳机或线路输出,这些也可作为多通道音频输出使用
[手机便携]
使手机实现音响效果的音频播放器
降低充电器和适配器无负载功耗研究
本文简要介绍如何利用ST的二次侧器件TSM家族降低充电器和电源适配器的无负载功耗,这个家族具有精确的电压和电流调节功能,而且在无负载条件下可以使整个系统在无负载条件下将总功耗降到近100mW。   TSM101x家族产品集成了一个电压基准器件和两个运算放大器,是高度集成的需要恒压(CV)和恒流(CC)模式的开关电源解决方案。电压基准器件和一个运算放大器的集成使之成为理想的电压控制器。另外一个运算放大器再与这个集成的电压基准器件和几个外部电阻器配合,可以起到一个限流器的功能。   这些产品用于要求恒压和输出限流的充电器以及适配器,可以用于电压参考精度在0.5%到1%之间的各类应用。   在一个典型的充电器和适配器系
[模拟电子]
降低充电器和适配器无<font color='red'>负载</font>总<font color='red'>功耗</font>研究
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved