基于FPGA控制的动态背光源设计

最新更新时间:2012-03-20来源: 电子发烧友关键字:FPGA  控制  背光源设计 手机看文章 扫描二维码
随时随地手机看文章

    引言

    当代LCD 显示大部分采用的是冷阴极射线荧光灯(CCFL)背光或LED 静态背光,由于CCFL 亮度不易控制并且响应速度慢,造成能源浪费和动态模糊。LED 静态背光效果虽好,但是其耗能也较为严重,另外恒定亮度的背光使得图像的对比度下降,显示效果不理想。对图像RGB 像素进行分析,在某些区域适当地采用低一级亮度的LED 背光,不仅可以节能,而且会扩大图像显示的对比度,消除动态模糊现象。

    1 设计方案及其原理

    动态背光源表面上是个整体,其实内部在制作原理图时已经将之分成多个区域,分别控制其各自的亮度。可知背光灯的密集度越高,划分的区域越多、面积越小,显示出来的整体效果会越好。但是从成本、经济价值、制作工艺、节能等方面综合考虑,可知灯的数目不可能无限多,划分的区域也不会无限密集,但是总可以找到一个最合适的设计规格。

    RGB 色彩模型是工业界的一种颜色标准,通过RGB 模型为图像中每一个像素的RGB 分量分配一个0~255 范围内的强度值。RGB 图像只使用三种颜色,按照不同的比例混合, 理论上在屏幕上呈现16,777,216 种颜色。在本系统只有RGB 各个分量不能直接得到我们需要的亮度控制参数Ki,需要经过FPGA运算得到图像各个像素的灰度值,然后再计算。

    对图像进行灰度计算的基本思想是将每个像素的RGB 三种颜色成份的值取平均,然而由于人眼的敏感性,这种做法效果并不好,应该是每个分量需有一定的权重,计算公式如下所示。

(1)为灰度计算公式,可直接由RGB 各个分量计算得到像素的灰度值,当然可以整体的放大或缩小,即乘以一个共同的系数。

(2)为由像素灰度求亮度公式,其中Tmax 为最大透过率,在同一个系统中为一固定值,可不予关注,γ 为RGB 像素矫正因子,B 为背光源亮度值。

  当背光源的亮度变为原来的1/λ即B' 时,为了使人眼观察灰度C' 像素的亮度不发生大的变化,应使两次得到的值一致,即:

令:

解方程可以求得:

    一般情况下,灰度的调节由8bit 数据控制,即可以将灰度值由0~255,分成256 份,其中每一份代表一个灰度级别(本实验中所使用驱动芯片的灰度级别为4,096)。所以可以令控光参数Ki:

    其中Cmax 为各个分割区域中的最大灰度值,Ci为各个相应区域的最大灰度值,计算得到的区域控光参数Ki 来调节FPGA 的输出,来调节背光板亮度,从而可以得到校正后各个像素的RGB 值分别为:

如方案图所示,最后将由控制器输出的行、场同步信号和校正后的RGB 信号等传输给LCD 板。

    方案中SDRAM 的主要作用有两个:一是在FPGA 处理不及时的情况下,用来存储从图形控制器传过来的行、场同步信息和RGB 数据信息等;二是存储FPGA 处理过的数据,单LCD 板未来得及处理的信息。这样设计的目的在于达到数据不丢失,信息传输更及时的效果。

关键字:FPGA  控制  背光源设计 编辑:探路者 引用地址:基于FPGA控制的动态背光源设计

上一篇:全球7大前沿技术,让太阳能电池效率翻番?
下一篇:电阻电桥基础:使用硅应变仪的高输出信号电桥

推荐阅读最新更新时间:2023-10-18 16:32

基于FPGA和DSP的高速瞬态信号检测系统
   引 言   目前国内急需一种能够对电火工品的发火过程进行实时无损耗监测的方法和手段,并根据监测结果对火工品的可靠性进行准确的判决和认证,解决科研和生产过程中的具体问题。本系统采用感应式线圈作为非接触式启爆电流的启爆装置,并采用高速A/D、FPGA、DSP等先进的集成电路实现了电火工品的无损耗检测。其主要目的是:第一,解决电火工品可靠性试验中微秒级瞬态信号的检测、处理和存储技术;第二,为可靠性试验提供一种在线的无损耗实时检测系统,以便对电火工品的发火全过程进行监测;第三,为电火工品的发火可靠性认证和评估提供真实的评价依据,减少或杜绝因拒收产品而出现经济方面的风险,同时也可减少或杜绝因错误地接收产品而出现武器装备质量方面的
[测试测量]
基于<font color='red'>FPGA</font>和DSP的高速瞬态信号检测系统
无刷直流马达控制电路
无刷直流电机(BLDC)是一种高效、高可靠性、低噪声和低维护成本的电机,由于其优异的性能,在许多应用中得到了广泛的应用,例如家用电器、工业自动化、电动车等。控制BLDC电机需要一个专门的控制电路,以下是常用的几种BLDC电机控制电路: 三相桥式电机驱动器:这是一种常用的BLDC电机控制电路,它使用三相桥式电路来控制BLDC电机的相位和电流。三相桥式电路由六个功率晶体管组成,通过控制不同的晶体管通断,可以使电机转动并控制其速度和方向。 三相反电动势(EMF)控制器:这种控制电路使用电机本身的三相EMF来控制电机转速和方向。它包括一个由三个电容器和三个绕组组成的桥式电路,通过改变电容器的充放电状态来控制电机的相位和电流。
[嵌入式]
无刷直流马达<font color='red'>控制</font>电路
STC单片机控制BH1750测量光照强度程序
/****备注:此程序最低值为00212lux,时序可能还有一些问题,有时候乱改的话还会出现一直是00212或者00000的情况,****/ /****且数据变化是不连续的00212,00425,00639,00852,01065等等****/ /****2016.10.18日补充:后来发现是BH1750_Write_Byte最后6句写的不对****/ /****2016.10.18日补充:通过修改BH1750_Write_Byte函数的最后6句,程序已经能够正常测试****/ #include reg51.h #include intrins.h bit write=0; sbit SDA=P2^0; sbit S
[单片机]
STC单片机<font color='red'>控制</font>BH1750测量光照强度程序
TQ210_裸机编程(二)——按键控制LED灯
首先我们可以在开发板配套材料中找到按键的电路图,E:TQ210_CD开发板配套电路图Bottompdf格式TQ210_BOARD_V4_20121023。 可以看到按键key1~key6对应的地址线为XEINT0~XEINT5,我们暂时就只用前面几个按键。 然后我们再找地址线在板子中相应的引脚号。 可以看到 按键地址线XEINT0~XEINT5对应的管脚号为GPH0_1~GPH0_5。 现在在S5PV210_UM_REV1.1文档中就能找到GPH0的控制寄存器,对应的控制6个按键。 将按键控制寄存器都设置为外部中断处理。然后去设定外部中断的处理相应参数。 外部中断要设置2个中断寄存器,EXT_INT_CON,E
[单片机]
TQ210_裸机编程(二)——按键<font color='red'>控制</font>LED灯
英飞凌推出搭载PFC功能的高压谐振控制
德国慕尼黑 2015年3月9日 英飞凌科技股份有限公司(FSE:IFX / OTCQX:IFNNY) 通过引入ICL5101,拓展了其在 40W 到 300W 照明系统的控制IC产品组合。该款新型高压谐振控制IC ICL5101高度集成化,有助于降低系统成本。其典型应用包括:室内及室外LED 照明、高/低棚照明、街道照明、停车场及天棚照明、办公室照明、零售以及商店照明。照明系统的总体拥有成本是工业照明的重要考量因素,而新型ICL5101 所支持的谐振拓扑效率高达95%,因此备受客户青睐。 高度集成的ICL5101可实现LED 驱动器的高端设计,相比于同时需要独立PFC IC和谐振IC的类似
[电源管理]
英飞凌推出搭载PFC功能的高压谐振<font color='red'>控制</font>器
基于ARM的浆果采摘机械手运动控制研究
随着计算机和自动控制技术的迅速发展,农业机械将进入高度自动化和智能化时期。浆果采摘机器人的应用可以提高劳动生产率和产品质量,改善劳动条件,解决劳动力不足等问题。浆果采摘机器人主要由机械手及末端执行器、视觉及决策系统、控制系统等部分组成。本文将阐述如何利用ARM 微处理器实现浆果采摘机器手的运动控制。 本控制系统采用ARM(Advanced RISC Machine)微处理器,其与单片机和DSP 等相比具有很强的通用性,以其高速度、高性价比和低功耗等优点被广泛应用于各个领域。 1 控制系统功能要求 浆果采摘机器人的主要执行部分 机械手分为手臂和手腕两部分。机械手如何躲避障碍物并能准确到达果实目标的位置是
[单片机]
基于ARM的浆果采摘机械手运动<font color='red'>控制</font>研究
基于单片机的压力测量控制系统设计
目前我国发展煤炭生产机械化发展迅速。综采设备的应用,是提高效率、改善安全状况的措施。 影响开机率的一个主要因素是支架对工作面的顶板控制的好坏,因此,对综采工作面进行矿压监测与控制是很有必要的。要做到这一点,首先需要对井下工作面的液压支架的实际工作状况进行监测,通过对检测数据处理、分析,评定其效果,并采取相应措施,以提高开机率、提高产量。本文以监测综采液压支架的压力为研究内容,开发了一套基于 单片机 的压力测量控制系统。 2 压力测量控制系统功能设计 压力测量控制系统用于监测支架压力, 每台测量控制系统配有四只 传感器 , 可分别通过高压油管连接支架的立柱、平衡千斤顶, 前探梁千斤顶的油压腔。压力测量控制系统接收
[单片机]
基于单片机的压力测量<font color='red'>控制</font>系统<font color='red'>设计</font>
一文了解透彻PID控制
PID及其衍生算法,是目前工业应用最为广泛的算法之一,是当之无愧的万能算法! 对于研发人员来讲,熟练掌握了PID算法的设计与实现过程,就足够应对一般的研发问题了。 PID概念 PID是比例(Proportional)、积分(Integral)、微分(Derivative)的缩写,将偏差的比例、积分、微分通过线性组合构成控制量,用这一控制量对被控对象进行控制。 PID的控制流程简单到不能再简单,如图1所示: 图1:PID控制流程 通过这张流程图,我们可以看到PID也是反馈控制,在PID控制中: 1. 第一步 根据反馈值和期望值求出误差,比如轨迹跟踪控制中,这个误差就是车辆当前位置和期望路径之间的距离; 2. 第二步 求出误差
[嵌入式]
一文了解透彻PID<font color='red'>控制</font>
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved