1 原理与设计
1.1 辅助电源工作原理
隔离式单端反激电源电路结构原理如图1所示。
隔离式单端电源是指高频变压器作为主要隔离器件,且变压器磁芯仅工作在其磁滞回线一侧。所谓反激式系指开关功率管VT1导通时,在初级电感线圈中储存能量,而当VT1关闭时,初级线圈中储存能量再通过次级线圈感应释放给负载。
其电路工作过程如下:
当MOS管VT1导通时,电流从电池正极经脉冲变压器上端流经脉冲变压器至下端,再从功率管VT1的D极至S极,最后返回至电池负极。电流在流过脉冲变压器时它在变压器初级电感线圈中做功储存了能量。经变压器耦合,使变压器次级产生了一个上负下正的电压,该电压同时使与变压器次级相连接的二极管VD处于反偏压状态,所以二极管VD截止。在变压器次级回路无电流流过,既没有能量传递给负载。当MOS管VT1截止时,因电感线圈的自感电动势作用,电流方向变成了上负下正,经耦合,变压器次级电感线圈中的电压反转过来,即上正下负,从而使二极管导通,初级上电压经二极管整流成为直流单向脉动电压,该电压给输出电容C充电,同时在负载RL上也有了电流IL流过。
1.2 开关电源的设计
1.2.1 技术指标
具体技术要求为:
(1)输入电源电压:DC 24 V,48 V,110 V,220 V,330 V±99 V。
(2)输出电压电流:VCC1=15 V±0.15 V,0.7 A;VDD1=5 V±0.05 V,0.3 A;VCC2=12 V±0.12 V,0.1 A;VCC3=15 V±0.15 V,0.2 A;VCC4=24 V±0.24 V,0.1 A;VCC5=24 V±0.24 V,0.3 A。
(3)额定输出功率:30 W,最大输出功率40 W。
(4)电压调整率:<1%,1I(I指额定输出电流)。
(5)负载调整率:<1%,0.2~1I。
(6)纹波系数:VPP≤200 mV。
(7)整机效率:多路电源>80%。
(8)工作环境温度:-10~+45℃。
(9)温升:<35%。
(10)过载承受能力:1.1I(10 min)。
1.2.2 开关电源主回路
主回路开关管选用电压驱动型功率管IRF530,与传统的反激自激式开关电源中的晶体管相比,具有频率高,驱动控制简单,驱动功率小的优点。为了减小开关管的开关应力,设计了与初级电感并联的RC缓冲电路,吸收关断过电压的能量。为了满足输出低纹波的要求,输出由TL431构成的精密光耦反馈电路与多级电容滤波。
1.2.3 变压器的设计
设计高频变压器首先应该从选择磁芯开始,然后是确定绕组的匝数。设计过程中需要了解与磁芯相关的多种特性及参数,需要进行各种参数计算和校验。
本文设计的变压器与传统线性变压器相比,具有体积小,重量轻,能量传递效率高,易于改装等优点。
变压器磁芯计算:
反激式开关电源高频变压器磁芯计算可按面积乘积法(AP)计算。
式中:AP单位为cm4;P0为输出面积,单位为W;Ae为磁芯截面积;Aw是窗口面积;D占空比选为0.4;η效率选为0.8;Kw为窗口面积的利用系数值为0.4;J=400 A/cm2;△B=Bm-Br。
AP计算值可简化为:
式中Bm-Br取值0.15 T。
查表则可直接选用EE25型磁芯,为了留出足够的功率余量,实际选用EE28型磁芯。
1.2.4 各输出绕组与绕线
变压器初次线圈匝数计算公式:
式中:f为工作频率,值为150 kHz;B为铁心磁感应强度值为1 000 T;S为容量,S=(s/0.11)2×0.8,其中s为铁芯截面积,单位为cm2;Vi为输入电压;Vo为输出电压。
次级线圈匝数计算公式:
式中△V取值为1.5。
考虑到集肤效应,绕线不易太粗,并且尽量覆盖磁芯面积,可以采用多根并绕的方式。另外,绕制高压侧的3个绕组时,应尽量绕在磁芯的中间位置,即离磁芯的上、下端部都要有一定的距离,且在磁芯上、下端都缠上几毫米的胶带,这样可以保证与低压侧的绕组在开关电源变压器内部有足够的距离。
2 实验
2.1 实验主电路
主电路如图2所示。
该电路采用在变压器初级加上RCD箝位的反激变换器,6路输出;控制电路以UC3842为核心,再配以少量的外接元件。在整个电源运行系统中,电源系统实施的是个负反馈过程。如某种原因使输出电压上升时,则采样回路把上升的信号采集至系统放大器,即UC3842的反向端,经内部比较后输出一个减窄脉冲的过程,经脉冲变压器传递至次级,使次级的导通等面积相应减小,从而使输出电压下降。同理,当输出电压下降时,也可理解为一个相反的过程,使输出电压上升。
2.2 实验结果分析
直流电压经R1向UC3842的第7脚提供电压,当电压大于17 V时电路启动。启动后,反馈绕组通过D3,D4,C7,C8给UC3842供电;R7,R8组成光耦发射极信号输出端引入至第2脚内部的高速放大器的反相输入端,最终形成电源系统负反馈,使输出电压稳定。电源在额定功率输出时,主回路输出电压1 5 V,比较光滑。纹波峰峰值约为140 mV,整机效率达到90%,对于短路过流情况也能够给予芯片很好的保护,达到了设计目标。实验输出电压波形如图3所示。
3 结语
本文设计的辅助开关电源工作稳定,输出纹波小,变压器无发热现象。经投入到光伏逆变电源系统,具有良好的工作性。
上一篇:高准确性的频率测量系统
下一篇:大地牌TJ30型3KW交流稳压器电气原理图及工作原理
推荐阅读最新更新时间:2023-10-18 16:35
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- 微软领先科技巨头,成为英伟达Hopper芯片最大买家
- 芯启源(上海)将持续发力,“做深做精”EDA及IP产品
- 本田严厉警告日产:若与鸿海合作,那么本田与日产的合作将终止
- Microchip推出新款交钥匙电容式触摸控制器产品 MTCH2120
- Matter对AIoT的意义:连接AIoT设备开发人员指南
- 我国科学家建立生成式模型为医学AI训练提供技术支持
- Diodes 推出符合车用标准的电流分流监测器,通过高精度电压感测快速检测系统故障
- Power Integrations面向800V汽车应用推出新型宽爬电距离开关IC
- 打破台积电垄断!联电夺下高通先进封装订单
- Ampere 年度展望:2025年重塑IT格局的四大关键趋势