频率计算法设计RCC开关电源

最新更新时间:2012-04-01来源: 21IC中国电子网关键字:RCC  开关电源  频率计算  变压器设计 手机看文章 扫描二维码
随时随地手机看文章

  RCC(Ringing Choke Convertor)式开关电源具有所需器件少,成本低,不用外部时钟控制,工作于临界连续状态,可以方便地实现电流型控制,在结构上是单极点系统,容易得到快速稳定的响应,具有自动功率限制等优点。RCC电路原理简单,由开关变压器和主开关管谐振产生振荡,副开关管可以调节占空比,以此调节输出电压。但是RCC电源的占空比、工作频率随使用环境和内部参数的变化而改变,使得开关管控制极的电流驱动波形难以确定,给器件参数选定,尤其是变压器的设计带来困难。传统设计主要有诺模图法和磁芯面积乘积AP计算校验法。这两种方法在定频率计算中较实用,但若未知频率,将不能用以上两种方式设计。传统的方法是给RCC电源预设一频率,然后设计变压器。但因变压器参数直接影响到电源的工作频率,所设计的变压器工作频率经常与预设频率相差太大而不能正常工作;电源参数需多次重复设计,导致初期设计计算量大,而且该“拼凑法”在后期调试中,实际频率很难与理论值吻合,导致电源不能工作在设计的最佳状态。
    本文推导出频率计算公式,并得出频率与输入电压成正比,与负载电流、初、次级电感量成反比。在确定的输入电压和已知的最大输出功率下,根据电源给定的输入电压、输出电压、额定工作频率和占空比直接求取变压器的初、次级匝数,一次设计就能确定变压器所有参数,解决了高频变压器设计中需要反复设计与验证的问题。基于该方法设计了一台5V/10A的开关电源,并对电源的工作频率、占空比等参数进行了验证。

1 RCC原理
1.1 RCC原理
    RCC原理图如图1所示。上电后,C3两端电压使电流经起振电阻R1,R2,驱使主开关管Q1导通,随着Q1导通,经由反馈电感T1的反馈信号加强对Q1控制极正向驱动,使Q1迅速导通。因感应电动势与电流变化率成正比,当变压器初级电流最大(饱和导通)时,T1’两端电压为0,Q1退出饱和状态开始关断。此时,T1’感生反向电动势,加速Q1关断,同时饱和状态R4两端电压驱使Q2开通,并将Q1控制极短路,使Q1关断,经起振电阻R1,R2重新使Q1导通,依此循环。RCC电路始终工作在临界导通模式,不会出现反激变换中的连续能量传递模式,其初级电流始终都是一个锯齿形三角波形,而不会出现梯形波。RCC电路调节电压的输入方式是通过控制初级峰值电流来实现的。

1.2 自振荡频率计算
    若变压器T1的初级、次级电流为i1,i2,电压为u1,u2,匝数为N1,N2,电感量为L1,L2,分析变压器初级电感,由电磁感应定律知,在导通时间△t下有以下关系:

  [page]  由式(8)可知,占空比与变压器初级电感量L1成正比,与输入电压u1、次级电感量L2成反比,占空比不受初、次级电流变化的影响。
    理想状态下变压器的输入输出能量相等:
              
    
    由式(10)可知,振荡频率f随u1的升高而升高,随输出电流i2、初次级电感量L1,L2的增大而减小。根据式(8),式(10),可确定变压器的初、次级电感L1,L2,它们是检验电源能否达到设计要求的重要参考。
2 设计实例
    基于频率计算法设计了一个50 W的RCC开关电源,其原理图如图2所示。为了图面清晰,图中未画出工频滤波和整流电路。该电源采用典型RCC拓扑结构,其整流、滤波、缓冲吸收电路、电压负反馈电路、过流控制的设计可参照文献。


2.1 选择磁芯
    所设计的电源最大输出功率为Pout=50W,所需的输入功率Pin=Pout/η,预计效率为0.8,以时变压器能承载的最大功率应不小于62.5 W。若设计的电源最低工作频率不低于50 kHz,查磁芯参数表知,EE30磁芯在50 kHz时最大输出功率为64 W,能满足所需功率的要求,其磁芯有效截面积Ae=109mm2。
2.2 求初、次级匝数
    自激反激式变压器匝数N的计算公式为:
    
    式中:输出电压u2=5.7V(含整流管压降0.7V),若允许磁芯工作磁通密度Bw≤120mT,将Bw代入式(11)得N2≥4.35,则取整为5匝。
    由于变压器的输入/输出能量相等:
    
    由于次级最大平均电流为10 A,设计占空比D为0.3,则输出瞬时极限电流I2max=28.57 A,由式(6)解出次级电感量L2=2.45μH。同理可以得出初级极限电流Imax=1.34A,初级电感量L1=1.39mH。由式(4)知N1=106。
2.3 选定线径
    漆包线电流密度J=4 A/mm2,则线径为:
    
    相应可得初次级绕组线径分别为:φ1=0.253 mm,φ2=1.784 mm。对照GB(国标)线径表,取接近且不小于计算值的初级线径为0.28 mm,次级线径为1.25mm,两股并绕。
2.4 磁芯窗口空间校验
    线圈所占窗口面积为:
    
    查相应磁芯参数表知,EE30磁芯的窗口面积Aw=73.35 mm2,若窗口使用系数取推荐经验值0.4,则0.4Aw=29.34 mm2>Aw1,磁芯空间可以容下绕组。
2.5 气隙计算
    为了有效防止磁芯磁饱和,RCC式开关电源高频变压器应在磁芯中插入气隙,使磁芯的导磁率下降。气隙Lg的计算公式为:
    
    式中:μ0为真空中磁导率,所有量均为已知。计算得Lg=1.26 mm。由于磁芯为EE型对称安装,磁芯气隙均分到磁芯所留空隙中,EE30磁芯安装时,需要保留Lg/2=0.63mm的间隙。变压器的主要参数如表1所示。


关键字:RCC  开关电源  频率计算  变压器设计 编辑:冰封 引用地址:频率计算法设计RCC开关电源

上一篇:2.5V/18KA超导磁体模型线圈电源设计
下一篇:分析探讨UPS中的PFC电路

推荐阅读最新更新时间:2023-10-18 16:35

宽带RF阻抗变压器设计
阻抗匹配器件常常用于高频电路中,一般用来匹配元器件的阻抗和电路或系统的特性阻抗。在某些电路中,希望阻抗匹配能够 实现多个八度音阶频率覆盖范围,同时插损很低。为了帮助阻抗变压器设计人员,本文对阻抗比为1:4的不平衡到不平衡(unun)宽带阻抗变压器的设计进行了探讨。这种变压器在无线通信系统(一般是混合电路、信号合分路器)中很有用,对放大器链路的级间耦合也很有益。 这种宽带unun阻抗变压器对测试电路、光接收器系统、带宽带阻抗匹配的微波电路,以及天线耦合也很有用。可用于高频电路设计及 仿真的现代计算程序在自己的工具箱里就收纳了这种器件。宽带unun阻抗变压器包含了一个缠绕了双绞传输线的环形铁氧体磁芯,绕线间通过釉质膜隔离。结合 常规传
[电源管理]
宽带RF阻抗<font color='red'>变压器</font>的<font color='red'>设计</font>
高频变压器设计基础
设计高频变压器首先应该从磁芯开始。 开关电源 变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的 电阻 率。磁导率高,在一定线圈匝数时,通过不大的激磁 电流 就能承受较高的外加 电压 ,因此,在输出一定功率要求下,可减轻磁芯体积。磁芯矫顽力低,磁滞面积小,则铁耗也少。高的电阻率,则涡流小,铁耗小。铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。 高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。在高频链的硬件 电路 设计中,高频变压器是重要的一环。 高频变压器的设计通常采用两种方法 :第一种是先求出磁芯窗口面积AW与
[电源管理]
电源变压器简易设计
电源变压器是低频变压器. 本文介绍的方法适合50Hz一千瓦以下普通交流变压器的设计. (1) 电源变压器的铁心. 它一般采用硅钢片. 硅钢片越薄,功率损耗越小,效果越好.整个铁心是有许多硅钢片叠成的,每片之间要绝缘.买来的硅钢片, 表面有一层不导电的氧化膜, 有足够的绝缘能力.国产小功率变压器常用标准铁心片规格见后续文章. (2) 电源变压器的简易设计.设计一个电源变压器,主要是根据电功率选择变压器铁心的截面积,计算初次级各线圈的圈数等.所谓铁心截面积S是指硅钢片中间舌的标准尺寸a和叠加起来的总厚度b的乘积.如果电源变压器的初级电压是U1,次级有n个组,各组电压分别是U21,U22,┅,U2n, 各组电流分别是I21,I22,┅
[电源管理]
基于单片机的功率直流开关电源设计
1 引言 直流稳压电源已广泛地应用于许多工业领域中。在工业生产中(如电焊、电镀或直流电机的调速等),需要用到大量的电压可调的直流电源,他们一般都要求有可以方便的调节电压输出的直流供电电源。目前,由于开关电源 效率高,小型化等优点,传统的线性稳压电源、晶闸管稳压电源逐步被直流开关稳压电源所取代。开关电源主要的控制方式是采用脉宽调制集成电路输出PWM 脉冲,采用模拟PID调节器进行脉宽调制,这种控制方式,存在一定的误差,而且电路比较复杂 。本文设计了一种以ST 公司的高性能单片机μpsd3354 为控制核心的输出电压大范围连续可调的功率开关电源,由单片机直接产生PWM 波,对开关电源的主电路执行数字控制,电路简单,功能强大 。
[单片机]
基于单片机的功率直流<font color='red'>开关电源</font>的<font color='red'>设计</font>
变压器绕组极性和高低压端信号处理电路的设计
1 引言 电力变压器是通过变换电压来输配电能的电气设备,变压器绕组极性和变压器变压比试验就是要验证变压器能否达到预计的电压变换效果。因此,对变压器绕组极性和变压比的测试,是变压器出厂试验及变压器维修时必不可少的一个环节。本文介绍了电力变压器变压比测试仪器中变压器绕组极性和高低压端交流信号处理电路的设计。 2 变压器绕组极性测试电路的设计 测试变压器绕组极性时,可在变压器高压、低压端的相对应端子上(如A头)加一定的电压,通过高、低压端电压转换成的两个脉冲信号的异或关系来判别变压器绕组极性。这是基于高压低压端交流电压的频率相同这一点来考虑的。具体电路如图1所示。可以根据输出G值为高电平还是低电平来判断变压器绕组的极性。当G为高电平时,
[电源管理]
多用途延迟开关电源插座
家用电器、照明灯等电源的开或关,常常需要在不同的时间延迟后进行,本电源插座即可满足这种不同的需要。   工作原理:电路如图所示,它由降压、整流、滤波及延时控制电路等部分组成。   按下AN,12V工作电压加至延迟器上,这时NE555的②脚和⑥ 脚为高电平,则NE555的③ 脚输出为低电平,因此继电器K得电工作,触点K1-1向上吸合,这时“延关”插座得电,而“延开”插座无电。   这时电源通过电容器C3、电位器RP、电阻器R3至“地”,对C3进行充电,随着C3上的电压升高,NE555的②、⑥脚的电压越来越往下降,当此电压下降至2/3Vcc 时,NE555的③脚输出由低电平跳变为高电平,这时继电器将失电而不工作,则其控制触点恢复原位,
[电源管理]
用STM32F4的库函数RCC_PLLConfig()代替SystemInit()手动初始化
STM32上电复位后首先执行Reset_Handler,然后调用SystemInit()函数完成时钟等基本初始化,再执行main函数。 ; Reset handler Reset_Handler PROC EXPORT Reset_Handler IMPORT SystemInit IMPORT __main LDR R0, =SystemInit BLX R0 LDR R0, =__main BX R0 ENDP SystemInit()函数在文件system_stm32f4xx
[单片机]
教你简单区分模拟电源、开关电源、数字电源
在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。 模拟电源介绍 模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。 模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。 音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved