一种混合储能的太阳能充电器设计

最新更新时间:2012-04-08来源: 电子发烧友关键字:混合储能  太阳能  充电器设计 手机看文章 扫描二维码
随时随地手机看文章
    引言

  近年来随着能源短缺问题日益突出, 太阳能、风能等新型无污染的替代能源应用日益受到重视。独立型太阳能照明系统因其结构简单、无需铺设电缆, 且搭建、携带较为方便等特点在照明领域有着广泛应用前景。

  但目前急需解决的有铅酸蓄电池使用寿命较短及系统在弱光条件下充电能力不足这两大问题。系统储能元件铅酸蓄电池设计寿命约三年, 但由于充电方式、存储方式以及人为等诸多因素的影响导致其使用寿命过短,需要经常更换, 不仅加大了使用成本也影响了系统的稳定性。另外大部分已使用的系统在弱光条件下充电能力不足, 导致系统太阳能板利用率不高; 传统提高弱光充电能力的方法是采用组态优化控制来实现, 即根据外界光照强弱采用继电器控制太阳能板组件按照串联或并联等不同的组合方式给蓄电池充电, 确保太阳能板组件输出电压始终达到设定充电电压。这种方法虽然可以实现弱光充电, 但在组态变化的瞬间, 电路输出电压波动较大, 影响系统稳定性。此外, 由于采用继电器控制, 继电器的机械开关触点在工作较长时间后容易磨损失灵甚至引起误操作。为了有效提高系统弱光充电能力, 本文采用超级电容器组及升降压电路来实现弱光条件下有效充电, 并采用UC3909 实现对胶体密封铅酸蓄电池智能化充电管理, 延长蓄电池使用寿命。

  1  铅酸蓄电池充电特性

  铅酸蓄电池的充电特性是由其最大接受充电能力来体现, 是在保证蓄电池析气率较低、温升较低时所能承受的最大充电电流。其充电特性曲线方程式为:

 

  式中, I 为充电电流; I 0为初始最大充电电流; a 为最大接受力比; t 为充电时间。

  在实际的电池充电管理过程中, 要使蓄电池的充电过程完全吻合该充电特性曲线存在较大困难。因此本着提高充电效率、保障蓄电池使用寿命、实现合理有效充电的原则, 参考充电特性曲线, 采用智能控制芯片UC3909 实现对胶体密封铅酸蓄电池分段充放电控制管理。

  2  基于UC3909 控制器的四阶段充电

  目前独立型太阳能照明系统中蓄电池充电控制器一般采用的是三阶段充电方式,即先恒流充电、再恒压充电、后浮充充电。但由于某些应用场合的蓄电池会经常出现过度放电的情况, 如果一开始就直接进入较大电流充电的恒流充电阶段, 容易造成热失控, 易损坏蓄电池。所以在最开始的时候应该采用小电流IT 充电的涓流充电模式, 等蓄电池的端电压达到设定的充电使能电压UT 时, 再进行恒流充电。UC3909 芯片可以根据蓄电池的状态实现涓流充电、恒流充电、恒压充电和浮充充电四个阶段合理充电, 如图1 所示。

 

图1  UC3909 的四阶段充电曲线

  状态1: 涓流充电。

  当蓄电池电压低于充电使能电压UT , 充电器提供很小的涓流IT 进行充电, IT 一般约为0. 01C( C 为蓄电池容量)状态2: 恒流充电。

  当蓄电池的电压达到充电使能电压UT 时, 充电器提供一个大电流I BULK 对蓄电池进行恒流充电, 这一阶段是充电的主要阶段, 蓄电池端电压上升很快, 直至电压上升到过压充电电压UOC 时进入恒压充电阶段。

  状态3: 恒压充电。

  在此阶段, 充电器提供一个略高于蓄电池额定值的电压UOC进行恒压充电, 电路的充电电流将按指数规律逐渐减小, 直至电流大小等于充电终止电流I OCT(约为10 % IBULK ) , 蓄电池已被充满, 充电器进入浮充充电状态。

  状态4: 浮充充电。

  浮充充电阶段, 充电器提供浮充电压UF 对蓄电池以很小的浮充电流进行充电, 以弥补蓄电池自放电造成的容量损失。同时由于蓄电池的浮充电压随温度变化而变化, 因此需要选择与蓄电池相同温度系数的热敏电阻进行温度补偿, 确保在任何温度下都能以精确的浮充电压进行浮充充电。温度系数一般选择- 3. 5~ - 5 mV/ .

3  充电电路设计

  图2 所示为基于U C3909 太阳能蓄电池充电器电路框图, 光伏阵列经过电压电流采样再经模数转换将数字信号反馈至单片机, 单片机根据光伏阵列的工作状况输出PWM 信号去驱动PMOS 管, 实现对光伏阵列的最大功率跟踪。超级电容器组、DC/ DC 变换器、UC3909 用来实现对阀控铅酸蓄电池的四阶段充电控制, 并利用超级电容的特性优化充放电过程。本文侧重对超级电容器组、U C3909 及DC/ DC 变换器等部分实现对阀控铅酸蓄电池四阶段的充电分析及设计。

 

图2  系统框图

  3. 1  UC3909 充电器主要参数设计

  基于UC3909 的充放电电路如图3 所示。

图3  基于UC3909的充放电电路

  根据UC3909 内部集成电路及光伏阵列、超级电容参数并结合阀控铅酸蓄电池的容量及额定电压等参数对电路各个部分进行合理计算设计。本设计使用赛特公司生产的12 V, 65 Ah胶体密封铅酸蓄电池, 根据厂家提供的蓄电池充电参数, 浮充电压UF 取13. 8 V,充电使能电压UT 取10. 8 V; 过压充电电压UOC 14. 7V; 涓流充电电流I TC 取0. 26 A; 恒流充电电流I BU LK 取系统最大充电电流6. 5 A; 过充终止电流IOCT 取1 A.

  根据以上厂家所提供的蓄电池参数, 参照UC3909 芯片资料及相关参考文献,计算U C3909 外围元件参数, R S1、RS2 、RS3、RS4计算公式如下:

 

  式中, UREF 为UC3909 内部基准电压2. 3 V.代入相关值计算得( R S1、RS2、RS3、RS4 分别为245 k Ω 、16 kΩ  、53kΩ 、975 kΩ 。

  另外, 可以根据流入U C3909 内部电流误差放大器反向输出端CA 的固定控制电流ITRCK 、涓流充电电流I T 、恒流充电电流IBULK及过充终止电流IOCT 计算得出RG1、RG2 , R OVC1和ROVC2 , 其基本计算公式如下:

 

  RSET 取11. 5 k  , 电流采样电阻RS 取55 m  , 代入式( 5)、( 6) 得:

 

ROVC1和R OVC2满足以下关系式:

 

  最终ROVC1和ROVC2 分别选取为1 k Ω  , 10 kΩ 。

  3. 2  铅酸蓄电池的温度补偿

  光伏系统中的铅酸蓄电池一般与太阳能板一起安装在户外, 而周围温度的变化对铅酸蓄电池的性能有重大影响, 有研究表明,铅酸蓄电池的浮充电流对温度极为敏感, 温度每变化10℃, 浮充电流成倍增长, 对于本设计中用到的蓄电池, 根据厂家提供的参数, 同一浮充电流下, 其温度系数为- 3. 9 mV/ ℃  , 也就是说如果要防止浮充电流增加, 当温度升高1   时, 其浮充电压应该降低3. 9 mV ; 同理, 当温度降低1   时, 其浮充电压应该升高3. 9 mV才能保持浮充电流不变。

 

图4  铅酸蓄电池温度补偿电路

  U C3909 内部集成了具有铅酸蓄电池温度补偿功能的电路如图4 所示, A1 为电流/ 电压转换元件, 其输入端分别接10 kΩ   普通电阻及10 k Ω  热敏电阻。A2 与外接四个20 kΩ  电阻组成差动运算放大电路。RT HM 一般贴附在铅酸蓄电池的表面壳体用于检测其温度, 当铅酸蓄电池内部温度变化时, 通过热敏电阻RTHM 的反馈使U C3909 的基准电压2. 3 V 也随温度按- 3. 9 mV/℃ 的温度系数变化。从而确保铅酸蓄电池在浮充状态下准确工作于安全的浮充电压, 保护了铅酸蓄电池。

  3. 3  DC/ DC变换器设计

  由于光伏阵列受外界环境影响较大, 本系统中12 V的太阳能板输出电压的变化范围约为0~ 20 V,如果直接为铅酸蓄电池充电, 由于铅酸蓄电池的正常工作电压要高于10. 8 V, 因此当弱光条件下, 太阳能板的输出电压低于铅酸蓄电池的端电压时, 其产生的电能不能被铅酸蓄电池吸收。因此本系统采用把太阳能板输出经过超级电容器组, 再由超级电容器组先经升降压后为铅酸蓄电池充电, 有效增强系统弱光充电能力, 提高利用效率。

  本设计采用升降压模式, 如图5 所示, 超级电容器组接DC/ DC 转换电路的输入端, 设定输入范围为4. 5~ 20 V, 输出电压范围为10. 8~ 14. 7 V.Q1 由单片机输出PWM 信号控制, Q2 由UC3909 的5 脚经MOS 管驱动电路控制, 5 脚输出PWM 频率由UC3909 的18 脚所接电阻RSET 及19 管脚所接电容CT决定, 公式如下:

 

 

图5  DC/ DC转换电路

  UC3909 的工作频率设定为200 kH z.同时在蓄电池的充电回路中还串接电流采样电阻RS , RS两端的电压信号作为U C3909 芯片内部电流采样放大电路的输入信号分别接于CS , CS+ 输入端, 考虑到充电电流较大, 为减少RS的功耗同时防止U C3909 芯片内部电流采样放大电路饱和失真, RS 应尽量小, 本电路中取55 m  .

  3. 4  超级电容器组在系统中的作用

  ( 1) 超级电容具有使用寿命长, 充放电限制少, 功率密度大, 充电电池比能量高, 可快速大电流充放电等优点, 是一种新型高效的储能器件。但由于其能量密度仅为铅酸蓄电池的1/ 5, 无法满足太阳能路灯照明这种大功率电路系统大容量储能的要求。因此本系统中采用蓄电池组与超级电容器组混合储能, 结合超级电容功率密度高及铅酸蓄电池能量密度高的特点, 提高储能系统性能。

  ( 2) 本系统中采用8 个2. 7 V, 1 200 F的超级电容串联成额定电压21. 6 V, 容量为150 F的超级电容器组, 由于12 V太阳能板在强光照射时其输出电压约为20 V, 采用21. 6 V超级电容器组既可确保储能器件的安全同时可以充分吸收太阳能板输出能量。

  ( 3) 由于系统采用MPPT 技术来实现最大功率输出, MOS 的高速导通与关断都会在输出端产生相应干扰谐波, 在太阳能板输出端及铅酸蓄电池间加上超级电容器组可以有效抑制干扰谐波, 保证铅酸蓄电池平稳充放电, 延长铅酸蓄电池使用寿命。

  ( 4) 铅酸蓄电池只能工作在UT 至UOC 电压范围内( 以12 V 铅酸蓄电池为例, 只能工作在10. 8~ 14. 7 V之间) .相比之下, 由于超级电容器组可深度放电, 其工作电压可以设定在较低范围, 如该系统中设定超级电容器组的最低输出电压为4. 5 V.因此在弱光状态下, 太阳能板的输出电压会高于超级电容器组端电压,确保输出电能被超级电容器组吸收储存, 再由升降压电路转换输出给铅酸蓄电池, 即实现了弱光充电功能。

  ( 5) 由于铅酸蓄电池的充电条件极为严格, 在蓄电池的不同四个充电阶段下, 其允许输入的电量不同, 而太阳能板的输出受外界环境影响变化很大。当太阳能板输出的电量大于铅酸蓄电池当前工作状态下可接受的输入电量时, 多余的部分能量将保存在超级电容器组中; 反之, 当太阳能板输出的电量小于铅酸蓄电池可接受的输入电量时, 超级电容器组内储存的电量可补偿不足输出给铅酸蓄电池。这样既可以确保铅酸蓄电池的平稳充电, 延长使用寿命, 也可以提高系统利用率。

  3. 5  实验仿真

  如图6 所示为protues 仿真器中当超级电容器组端电压为4. 5 V时U C3909 5 脚输出脉冲及此时DC/DC 的输出波形。仿真显示, 5 脚输出频率为200 kHz,DC/ DC 转换电路的输出较为平滑, 且电压幅值为13. 6 V, 属于设定输出电压范围, 与实测效果基本相符, 说明系统可以实现弱光充电功能。

 

图6 UC3909 5 脚输出U5 及DC/ DC 电路U0 输出波形

  4  结语

  本系统采用超级电容器组与铅酸蓄电池做太阳能路灯照明系统混合储能元件, 利用超级电容器组及升降压电路实现弱光充电功能, 有效提高太阳能板利用率。同时利用UC3909实现铅酸蓄电池的四阶段充电管理, 延长了蓄电池使用寿命, 提高系统稳定性及使用效率。

关键字:混合储能  太阳能  充电器设计 编辑:探路者 引用地址:一种混合储能的太阳能充电器设计

上一篇:基于CAN总线的蓄电池组集散控制系统设计
下一篇:通用的电池充电器原理图

推荐阅读最新更新时间:2023-10-18 16:36

太阳能车载电子标签OBU的设计应用
  考虑到我国实施的不停车收费系统采用的是双片式车载电子标签,这就需要车载电子标签有较强的电源模块为工作模块(读卡模块、DSRC接收发射模块等)工作提供足够的电力。传统的车载电子标签一般采用3.7V高性能锂电池,使用时间一般在两年左右。由于车载电子标签是一次固定在车辆上,不允许私自拆卸,电池电量耗尽后更换电池需要到指定的维修机构进行拆卸,非常不方便。为此,上海东海电脑国内首家推出了太阳能充电的车载电子标签,采用可充式锂离子电池+强光型太阳能充电模块+外接式充电器的供电方式,使电子标签的使用寿命延长到5年以上,大大减轻发行服务网点和车主的负担。   一、 太阳能电子标签功能模块示意图     二、 太阳能电子标签供电方
[嵌入式]
光伏逆变器制造商SMA太阳能2016利润额预期缩减一半
主流光伏逆变器制造商SMA日前下调其2016年销售额及利润额预期,其主要原因为全球各太阳能市场上的产品价格压力。 公司表示,自2016年中期以来,由于中国下游市场光伏电站领域内的发展放缓,以及其他关键地域市场上主要太阳能光伏电站项目的延期,导致全产业内出现了产能过剩状况,从而使得产品平均销售价格持续下滑,因此SMA公司将其息税前利润(EBIT)下调一半。 SMA公司首席执行官Pierre-Pascal Urbon先生表示:“在2016年第三季度取得了成功之后,我们预计年末的业绩会由于持续的价格压力和EMEA及南美地区多个项目的延期而处于较弱的地位。SMA及时针对市场状况作出了应对。今年,我们在业内知名行业活动中,为欧洲和美国客户展
[新能源]
2024年全球混合型风能和太阳能储能规模将达15亿美元
  根据Global Market Insights,Inc.最新研究报告,到2024年,混合型 太阳能 风能储能市场将达到15亿美元。下面就随电源管理小编一起来了解一下相关内容吧。 2024年全球混合型风能和太阳能储能规模将达15亿美元   政府要求在商业机构部署清洁能源系统将推动混合 太阳能 风能储能市场增长。此外,提升城市地区的服务行业以实现能源效率将进一步增强行业格局。欧盟2014年制定了欧盟“20-20-20”气候和能源目标,旨在到2020年将可再生能源在整体能源结构中的比例提高20%,从而将温室气体排放量降低20%。   政府关希望通过提高对可持续和有效发电来源的依赖来实现绿色能源经济结构将激活英国混合 太阳
[电源管理]
采用STM32 单片机的太阳能LED街灯解决方案
随着化石类能源的日益减少,以及温室气体的过度排放导致全球变暖问题越来越受到重视,人们一方面在积极开发各类可再生新能源,另一方面也在倡导节能减排的绿色环保技术。太阳能作为取之不尽、用之不竭的清洁能源,成为众多可再生能源的重要代表;而在照明领域,寿命长、节能、安全、绿色环保、色彩丰富、微型化的LED固态照明也已被公认为世界一种节能环保的重要途径。太阳能-LED街灯同时整合了这两者的优势,利用清洁能源以及高效率的LED实现绿色照明。 本文介绍的太阳能-LED街灯方案,能自动检测环境光以控制路灯的工作状态,最大功率点追踪(MPPT)保证最大太阳能电池板效率,恒电流控制LED,并带有蓄电池状态输出以及用户可设定LED工作时间等功能。 系统结
[电源管理]
采用STM32 单片机的<font color='red'>太阳能</font>LED街灯解决方案
基于AVR单片机的太阳能发电量检测装置的设计
简介:文中提出并设计了一种基于AVR单片机的太阳能发电量检测系统。系统能够将所测得值实时显示在液晶屏幕上。 摘要:发电量检测是太阳能光伏发电系统的重要组成部分。本文设计了一种精度更高,功耗、成本更低的太阳能发电量检测系统。系统以AVR单片机为控制器,避免了数模转换器等引起的能量消耗并最大程度地简化了系统结构。同时引入了霍尔电流传感器,可以几乎无损耗地将电流信号转换为电压信号。实验结果表明:太阳能发电系统正常工作时,太阳能发电量能够实时显示在显示屏上,且误差率不超过5%。 太阳能的利用已经成为化解能源危机的一条途径。因而,国内外的相关科研、技术和产业部门都在积极致力于太阳能相关设备的研究和开发,并取得了相当的成就与发展。如高
[单片机]
基于AVR单片机的<font color='red'>太阳能</font>发电量检测装置的<font color='red'>设计</font>
Allegro推出定制SOIC16W封装,非常适合功率密集型混合动力/电动汽车和太阳能等应用
运动控制和节能系统电源和传感解决方案的全球领导厂商 Allegro MicroSystems(以下简称 Allegro )宣布推出名为“MC”的全新定制 SOIC16W封装 ,这标志着业界电流传感技术在需要高隔离度和低功耗的功率密集型应用中的一个飞跃。这种全新封装具有265μΩ的超低串联电阻,比现有SOIC16W解决方案低2.5倍以上,同时提供 Allegro s最高认证的5kV隔离等级。 采用新封装供货的首批器件是Allegro电流传感器 IC ACS724 和ACS725,两款产品在速度和精度方面均可提供领先的性能。这些器件是DC/DC转换器、太阳能逆变器、UPS系统、各种电动车辆(xEV)车载充电器(OBC)、电动汽车充
[汽车电子]
复合半导体纳米线将解决太阳能电池晶格错位难题
美国科学家开发出一种新技术,首次成功地将复合半导体纳米线整合在太阳能硅片上,攻克了用这种半导体制造太阳能电池会遇到的晶格错位这一关键挑战。他们表示,这些细小的纳米线有望带来优质高效且廉价的太阳能电池和其他电子设备。相关研究发表在《纳米快报》杂志上。 III-V族化合物半导体指元素周期表中的III族与V族元素结合生成的化合物半导体,主要包括镓化砷、磷化铟和氮化镓等,其电子移动率远大于硅的电子移动率,因而在高速数字集成电路上的应用比硅半导体优越,有望用于研制将光变成电或相反的设备,比如高端太阳能电池或激光器等。然而,它们无法与太阳能电池最常见的基座硅无缝整合在一起,因此,限制了它们的应用。 每种晶体材料都有特定的原子间距--晶格常数(
[新能源]
利用MCU 设计离线锂电池充电器
高效、低成本及可靠的电池充电器设计可用各种方法来实现,但采用8 位闪速MCU 不仅能缩短设计时间、降低成本及提供安全可靠的产品,而且还能使设计人员以最少的工作量来进行现场升级。考虑到电池安全充电的成本、设计效率及重要性,基于MCU 的解决方案可为设计者们提供诸多优势。通过选择带适当外围与闪存的8 位MCU,工程师们能充分利用其优势来设计一种离线锂电池充电器。带2KB 闪存及适当外围以提供一种廉价解决方案的飞利浦 80C51 型MCU 就是这样一个例子。集成化闪存还能提供高效及方便地调试应用代码并进行现场软件升级(如果需要)的能力。由于设计界不仅熟悉而且广泛接受8 位MCU,故软硬件开发可快速进行。由众多厂商提供的各种功能强大且并不昂
[单片机]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved