噪声和TDMA噪声
“噪声”通常广泛用于描述那些会使所需信号的纯净度产生失真的多余的电气信号。一些类型的噪声是无法避免的(例如被测信号幅值上的实际波动),只能通过信号平均化和带宽收缩技术来克服这类噪声。另一种类型的噪声(例如,射频干扰和“接地回路”)能够通过不同的技术来降低或者消除,包括滤波技术和仔细的接线设置以及器件位置摆放。最后,有一种噪声,它起因于信号放大过程并能够通过低噪声放大器设计技术来削弱。尽管降低噪声的技术是有效的,但总是希望从可免于噪声干扰,并具有尽可能低的放大器噪声的系统开始使用降噪技术。下面介绍的是影响电子电路的各种类型噪声的简单总结。
热噪声(或者Johnson噪声或者白噪声)与电阻中电子的热扰动而体现出的温度直接相关。在扬声器或者麦克风的例子中,噪声源是空气分子的热运动。
散粒噪声是由于从表面发射或者从结点扩散的大量带电载流子随机的波动而造成的。该噪声总是与直流电流相关联,而与温度无关,它主要存在于双极性晶体管中。
闪烁噪声(或者是1/f噪声或粉红噪声)主要是由于硅表面玷污和晶格缺陷相关的陷阱造成的。这些陷阱随机地捕获和释放载流子,并具有与工艺相关的时间常数, 产生了在能量聚集在低频率处的噪声信号。
炒爆噪声(爆米花噪声)的产生是因为重金属离子玷污的存在,在一些集成电路和分离电阻中都会发现此类噪声。在一些双极性集成电路中,炒爆噪声是由于发射区的太多掺杂而造成的。降低掺杂水平有可能完全消除炒爆噪声。这是另一种类型的低频噪声。
雪崩噪声是pn结中的齐纳现象或者雪崩击穿现象产生的一种噪声类型。在雪崩击穿发生时,反偏pn结耗尽层中的空穴和电子通过与硅原子的碰撞以获得足够的能量来产生空穴-电子对。
TDMA噪声(“哼声”)源于GSM蜂窝电话中产生的217Hz的频率波形,当它耦合至音频路径和传到扬声器、听筒或者麦克风时会产生可听见的噪声。下文会给出关于此类噪声的详细描述。
本应用指南将会明确说明客户在GSM蜂窝电话设计过程中驱动单通道扬声器时所遇到的TDMA噪声难题。在深入研究如何将该噪声最小化时,将会回顾一下桥接负载(BTL)单通道放大器工作的背景说明。在下面应用图示中,所有的电阻都具有相等的R值(图1)。
图1. 桥接负载的单通道放大器
在该结构(图1)中,一个输入信号VIN加到放大器A1的反相输入端并通过增益为0dB的放大。A1的输出连接到扬声器的一侧和放大器A2的反相输入端,同样经过0dB增益放大。A2的输出连接到扬声器的另一端。因为A2的输出同A1的输出是180度反相的,A1和A2之间的最终差值VOUT,是单个放大器输出幅值的两倍。当给定正弦输入信号, 比较单端放大器,该BTL结构有效地加倍输出电压,使得在相同负载下输出功率增加为原来的四倍(图2)。
图2 桥接负载的输出电压
[page] 正如GSM蜂窝电话制造商所发现的,BTL单通道结构容易受到射频信号的干扰(RFI)。这种干扰信号直接耦合到音频路径,使期望波形产生失真,听起来是一种“哼声”,被称之为TDMA噪声。GSM蜂窝电话使用TDMA(时分多址)时隙分享技术产生从800MHz至900MHz或者1800MHz至1900MHz的高功率RF信号。传输电流可以超过1A,在通话期间的脉冲重复速率为217Hz,脉冲宽度大约为0.5ms。如果电流脉冲耦合至音频电路中,大量的217Hz谐波信号会产生听到的“哼声”。
是什么造成可听到的“哼声”?在音频范围内的能量,包含217Hz的TDMA重复脉冲速率和它的谐波,在声道中以两种方式存在:在直流电源中的电流变化, 和在RF信号的调制包络。来自RF功率放大器在传输间隙吸取的大电流和RF电路在接收间隙吸取的较小电流形成了直流电源电流脉冲波形(图3)。
图3 周期性的传输和接收电流脉冲波形
耦合电流波形至音频电路的两个主要的产生机理是电源纹波电流和接地线纹波电流,它们都是以217Hz的频率存在。另外,发射RF能量的一部分也会耦合到音频电路中。
图4 RF能量耦合到音频电路中
当存在长的走线连接放大器输出至喇叭时,潜在的RF能量耦合到音频电路的事件最有可能发生,此时走线类似于天线的作用。好的布局应该能防止RF能量耦合至音频和电源走线,在电话中这些走线连接基带部分或者音频电路。这些子系统的设计必须能够阻止或者对地旁路RF信号, 使得该信号不会传至半导体有源音频器件的结点。能够通过不同的路径将RF能量从RF电路传至音频电路中:
* 从天线辐射到音频或者电源器件, 或者连接它们的走线或器件。
* 从RF器件经走线到音频器件的传导。
* 经地线至音频子系统的传导。
* 行线之间的线到线的耦合, 或者从行线至同一层或相邻层的地端耦合。
* 从行线到器件或者器件到器件的耦合。
预防方法包括屏蔽、地线设计和仔细的整体布局实践。一些预防方法如下:
* 屏蔽音频部分和与之关联的电源管理和基带部分来隔离杂散RF信号。屏蔽RF部分将杂散能量降到最低。
* 将屏蔽接至大地使大动态电流无阻碍流入。
* 将音频电路部分下面大块的连续音频接地和脉冲电流隔离开来。
* 不允许同一层上的走线将接地线分开。
* 将器件经多过孔与接地层相连。
* 不要将携带电源或者音频信号的布线与那些包含RF信号或大动态电源电流的走线平行放置。使敏感走线和潜在干扰源的间距最大。
* 对于必须保持垂直或(90’’)的走线设计,要将噪声耦合降到最低。
* 通过一个包含足够通孔的地线形成法拉第屏蔽来将内层的音频走线与非音频走线隔离。
* 不要将包含RF信号或者动态直流电流的走线直接放置在音频器件的下面。
[page] 将音频反馈和信号路径器件尽可能靠近音频放大器放置,将器件与RF能量源隔离开来。
尽管努力做了很多预防措施,但是仍然会有一些RF能量会耦合到音频走线上。还利用对地旁路电容形成的单极点低通滤波器进一步衰减传导至音频放大器半导体结点的RF能量。必须使用小容量的电容对RF能量进行旁路,这样才不会影响音频信号。因为GSM蜂窝电话的频带范围大约在900MHz至1800MHz之间,最佳电容的选取自然是上述频率中能够产生谐振的;10pF至39pF的典型电容值对音频信号的影响可忽略。在每个音频放大器输入端、输出端或者对RF能量敏感的电源引脚处,应该使用各自不同的电容对产生的RF能量进行旁路。如果需要进一步的隔离,应增加一个电感(或者铁氧体磁珠;铁氧体磁珠是电感和电阻的组合)来形成一个两极点低通滤波器,器件放置的物理位置4要尽可能的靠近放大器输出端。图5所示为LM4845单通道输出的实际应用。客户通过实现-3dB截止频率为1MHz的两极点低通滤波器,可以体验单通道喇叭的音频蜂音,其远超出了音频范围而又远低于GSM频率的频带范围。音频蜂音被衰减了30dB,属于听力可接收水平。
图5 隔离放大器输出的外置两极点低通滤波器
[page] 虽然GSM蜂窝电话制造商在使用LM4845时会遇到TDMA噪声的难题,其他的客户则不会。在寻找并处理客户电路的故障之后,可以确定较差的器件布局和较差的电路布线是产生音频蜂音的主要原因。为了帮助系统设计师将噪声敏感度降到最低,重新设计LM4845为差分的单端输入电路,放大器输出端是专有的RF抑制电路。这款改进的器件就是LM4946。图6所示为LM4845和LM4946在相同情况下的比较。如果没有RF抑制电路,通过217Hz的 TDMA脉冲在RF调制包络上的重复携载,RF能量可以传播到LM4845并耦合到音频路径中。尽管LM4946中存在同样的217Hz TDMA重复脉冲,RF抑制电路可以将RF能量的衰减从20dB增大至到30dB。图6也给出了在LM4946中得到充分衰减的调制包络。
图6 测量得到的TDMA噪声
当前,只有LM4884和LM4946包含了专有的RF抑制电路,应用该技术的更先进的其他产品正在开发之中。
结语
正如一句古老的谚语所说的,“预防胜于治疗”;我们可以将同样的哲理应用到GSM蜂窝电话的设计之中,在设计完之后再尝试去抑制TDMA噪声的成本比较昂贵、耗费大量时间还达不到所想要的效果,所以好的预防技术应该出现在实际的电路布局之前;器件定位,电源走线位置,地线位置,屏蔽和很多先前列出的预防技术。LM4946、LM4884以及具有RF抑制技术的未来产品能够充分地将TDMA噪声降到最低,目前仍没有单独的解决方案可以防止TDMA噪声的产生。
注意:在本应用指南中,术语“TDMA噪声”,“RF能量”,“音频蜂音”和“哼声”可以交替使用。
上一篇:输电线路行波故障定位中高速数据采集系统的实现
下一篇:一种改善杂散的DDS频率合成器
推荐阅读最新更新时间:2023-10-18 16:39
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况