滞环恒流LED驱动电路的电流采样电路

最新更新时间:2012-04-21来源: 电源网关键字:恒流  LED驱动电路  电流采样 手机看文章 扫描二维码
随时随地手机看文章

针滞环恒流大功率LED驱动芯片,提出一款高性能电流采样电路。该电路采用高压工艺,可承受最对高达40V的输入电压。通过分析滞环控制的特点,采用串联电阻采样技术,结合匹配电流源结构,在保证响应速度和采样精度的同时,降低了电路的复杂度。电路中加入输入电压补偿电路,进一步提高了恒流控制的精度。在Cadence下的仿真结果表明,电路可在800kHz的频率下正常工作,采样精度达99.78%;当电压从15V变化至35V时平均负载电流误差为0.81%;输出电压范围为0~5V。

当今照明领域,LED凭借其寿命长、功耗低、无污染等优点成为未来发展趋势。然而,要针对不同的应用场合,分别设计一个独特的芯片,目前情况是不可行的。因此,能够使电源与负载相互独立的电源管理芯片被广泛应用。在这些芯片中,无论是电压还是电流控制模式,都会通过检测电感电流进行过流保护。在电流模式中,采样电流还被用作环路控制。

提出的电流采样技术用于一种滞环恒流控制大功率LED驱动电路中,除具有环路控制与过流保护的功能外,还具有电压补偿的功能及结构简单的特点。

1 采样方式的分析与选择

1.1 现有采样技术

表1中列出了现有的几种电流检测技术并列举了其优缺点。文献对其进行了详细介绍。

表1 现有采样技术及其特点

 

1.2 滞环控制原理分析

图1是滞环控制电路框图。LED驱动电流的变化反映在Rsense两端的压差变化上。滞环电流控制模块内设两个电流阈值Imax和Imin,当电路接上电源时,功率管打开,电源通过Rsense、负载LED向电感L充电,驱动电流上升。当电流>Imax时,控制电路输出低电平关闭功率开关管。此时电感通过负载LED、Rsense和肖特基二极管放电,电流下降。当驱动电流

 

可以看到,滞环控制电路使用的是串联电阻采样技术。从表1可知,串联电阻技术的功耗很大,同样具有高精度且无损耗的Sensfet似乎更胜一筹。不过,Sensfet技术只能检测功率管打开时的电流变化情况,而无法检测功率管关断期间的电流变化。因此无法在需要始终对电流进行采样检测的滞环控制电路中使用。同时,由于输入电压较高,串联电阻所消耗的功率在整个电路功率中所占比例也降低了。

 2 电路设计

图2是电路采样电路结构图。Rsense为采样电阻,R1=R2=R;Mp1、Mp2、Mn1、Mn2组成的电压镜和Mp9反馈管组成匹配电流源作为电流检测电路。其中Mp1与Mp2相互匹配并被偏置在饱和区,Mn1与Mn2是两个相同且非常小的电流源,以保证流过Mp1与Mp2的电流相等从而使其具有相等的VSG。

 

 

由于Vin>Vcsn导致I1与I2不相等。采样电流Is即为这部分“多余”电流,大小为:

 

[page]式(1)中,实际流过Rsense的电流为IL+I2。因为I2的大小低于电感电流的10-4倍,其影响可以忽略不计。

图4为实际电路图。Vin与Vcsn为精确采样电阻Rcsn两端电压,输入范围8~40V;Vcc为芯片内部5V稳定电源。在实际电路中,VA对VB的匹配度直接影响采样精度。图3为简化的小信号模型。

图3

 

图4

应用KCL定理,得到

 

由式(6)可以看出,当gm1ro2或gm2越大,VA与VB的匹配度越高,电流采样越精确。值得注意的是,式中出现gm1ro3的平方项,这意味着可以用较小的增益达到高精度。但是,耐压5V的低压管无法在高输入电压下正常工作,电路中必须使用大量耐压40V的高压管。然而高压管的增益与等效输出电阻很低,无法满足电流采样电路的精度要求。

为使低压管能在高压输入中也正常工作,电压镜采用了高低压器件混用的共源共栅结构。Mp1、Mp2、Mn1和Mn2为低压管;Mp3、Mp4、Mn3和Mn4为高压管。一方面,高压管作为共源共栅器件增大了输出电阻;另一方面,它承受了大部分压降,以保护低压管不被击穿。不过,共源共栅结构带来另一个问题。串联电阻R2令Mp2和Mp4之间的次极点更靠近原点,使系统变得不稳定。为消除该极点带来的影响,在共源共栅结构的输出端加入补偿电阻R5和电容C,引入一个零点并使主极点更低。

 

[page]高压管Mp5~Mp10为匹配电流源的输出级,主要起隔离缓冲的作用,电流镜结构避免了增加新的极点。分流结构Mp7、Mp8将Mp5始终偏置在饱和区,从而允许流过Mp9与Mp10的电流最低降至0 A,使电路在空载时可以输出地电压,为芯片的进一步设计提供了方便。

P1~P12为保护管,防止低压管因漏源或栅源电压过高而被击穿。

高压管Mp11、Mp12、Mn7与R4构成了电压补偿电路。在前述的工作原理中,电路通过将电流限制在阈值Imax和Imin间周期变化达到恒流控制的目的。其中电源向电感的充、放电过程中,充电速率与输入电压成正比,放电速率和芯片的延迟则与输入电压无关。这一差异导致了在输入电压变化时,电流会因在固定的延迟时间中具有不同的上升斜率和相同的下降斜率,使实际电流峰值I’max升高,影响平均电流值。该补偿电路通过将与输入电压成正比的电压Vb2转换为与输入电压成正比的电流Ic,使流过R3的采样电流Isense对输入电压具有正相关性,从而在输入电压升高时令电流阈值Imax、Imin降低,抵消因电流上升斜率提高对平均电流带来的影响。

3 仿真结果

为验证文中提出的电流采样电路的功能,结合滞环控制电路及外部负载在Cadence中进行了仿真。图5为输入电压20V时采样电流、电压与负载电流的关系。由图可见,采样电流与采样电压随负载电流同相周期性变化,周期约为1.2μs。

 

经过测试,当负载电流从0.4A变化至1A时,电路采样精度最低为99.78%,理想的工作电流为0.6~0.8A,精度高达99.96%。

表2为不同输入电压下负载电流的峰-峰值。由表中数据计算,在输入电压由15V变化至35V的过程中,负载电流的最大误差仅为0.81%。

 

 

图6为外接电流源在0~1.2A之间跳变时采样电路输出电压的波形。图中输出电压范围为0~5V,为整颗芯片设计过流保护、开路保护等其他电路提供了方便。

 

4 结束语

设计了一款适用于滞环控制结构的电流采样电路。使用匹配电流源技术以很少的器件数量和简单的结构,实现了耐高压高精度的目的。端到端的输出电压范围,则使整颗芯片中其他电路的简化成为可能。电路中使用的电压补偿技术,使负载电流与输人电压的相关性大大降低。

 

 


 


关键字:恒流  LED驱动电路  电流采样 编辑:冰封 引用地址:滞环恒流LED驱动电路的电流采样电路

上一篇:浅谈低能耗LED提供更高效率照明
下一篇:RFI整流原理分析方法

推荐阅读最新更新时间:2023-10-18 16:39

驱动LED中恒流二极管的研究(二)
三.几种恒流二极管的参数 下面列出几种常用的恒流二极管的参数 四.恒流二极管的散热 由于恒流二极管要吸收市电电压的变化而有可能会承受很高的电压,假如电流也很大的话,它的功耗有可能会相当大,也就必须要有很好的散热,以免损坏内部的芯片。恒流二极管的散热主要取决于它的管壳封装。各种不同封装的散热能力主要表现在它的热阻。下面就来看一下各种封装的热阻。 由表中可见,On-semi公司的NSI50350ADT4G所采用的D-PAK具有最小的热阻,其耗散功率高达11W。不过如果整个系统设计于这样高的耗散功率也说明其效率不高,是需要避免的。 五.恒流二极管作为LED的驱
[电源管理]
驱动LED中<font color='red'>恒流</font>二极管的研究(二)
基于TOPSwitch-JX LED恒流驱动器的设计
在全球能源短缺、环境污染日益严重的情况下,LED作为新型高效固态光源,具有寿命长、节能、安全、绿色环保、色彩丰富、微型化等显著特点,必将成为照明的主流产品,因此LED横流驱动器的设计便引起广泛关注。 1 LED恒流驱动器设计方案 1.1 LED恒流驱动器设计理念 电路框架结构简单,低成本,PFC值高,芯片功耗小于20mW,恒流精度高。 1.2 LED恒流驱动器设计思想 1.2.1 LED恒流驱动器系统框架图 LED恒流驱动器的基本组成框架图如图1所示。交流输入通过保护电路和桥式整流滤波后得到脉动直流,脉动直流经MOSFET的通断后变成频率较高的交流信号,再通过隔离变压器经处理后得到直流信号,此直流信号经过反馈网络后并反馈
[电源管理]
基于TOPSwitch-JX LED<font color='red'>恒流</font>驱动器的设计
LED驱动电路提供PWM亮度控制
  引言   典型应用中,通过串口向LED驱动器发送指令改变相应LED的寄存器值进行亮度调节。用于亮度控制的数据通常为4位至8位,对应于16至256个亮度等级;有些Maxim的LED驱动器的亮度控制则通过调整漏极开路LED端口的恒定吸入电流大小来实现。   该应用笔记讨论如何在LED恒流驱动器上加入PWM亮度调节,通过控制LED电源的通、断调节亮度。也可以通过刷新数据位仿真外部PWM亮度控制。内置PWM的LED驱动器也可以通过外部PWM实现亮度调节,只要PWM信号的外部时钟可以同步。   PWM仿真   按照一定周期向LED驱动器发送开/关控制信号,可以仿真PWM亮度调节的效果。因为LED数据接口的传
[电源管理]
为<font color='red'>LED驱动电路</font>提供PWM亮度控制
基于C8051FF330D单片机的程控恒流源设计
摘要: 给出了用C8051FF330D的内部电流型D/A转换器和电流/电压转换电路来输出0~4V的模拟信号量, 用于控制恒流源输出电流, 并使其按设定的值进行变化, 从而完成可编程恒流源控制器的设计方法。利用该方法设计的程控恒流源具有电流纹波小、控制精度高和运行稳定等特点。   0 引言   在飞速发展的电子和电信技术系统中, 电源的优劣在一定程度上决定着电信设备的性能和寿命。因此, 人们对程控恒流器件的需求也日益迫切。虽然目前市场上的数控恒压技术已经比较成熟, 数控电压源产品也已朝着智能化和小型化的趋势发展, 且价格也越来越便宜。但是, 在恒流源方面, 尤其是数字控制的恒流技术则由于起步较晚, 高性能的数控恒流器件的开
[单片机]
基于C8051FF330D单片机的程控<font color='red'>恒流</font>源设计
12V LED的重要性与分布式恒流架构技术
把LED封装成12V,可以彻底解决电源设计难,寿命短,价格高等诸多问题。采用《分布式恒流》设计最稳定的、价格最优化、最经济的产品架构,结合12V封装,将一统天下电源标称值。打破电源设计适应LED规格格局,反过来LED封装适应电源电压标称值。   我们认为之前的公司在设计LED封装时,多是考虑LED封装本身,结合应用设计考虑的较少,很少考虑哪些才会是未来照明封装形式。LED灯具生产企业努力开发电源去适应LED封装形式,过多的封装形式和众多的设计理念,让我们的电源设计无从下手。反过来LED光源直接适应开关电源,一切都变的简单,因为开关电源经过几十年的发展和技术的沉淀,已经变得非常标准化,非常稳定。  把LED照明产品主要研
[电源管理]
12V LED的重要性与分布式<font color='red'>恒流</font>架构技术
LED驱动电路设计应用
根据具体应用的不同, LED 可能会采用不同的电源来供电,如交流线路、 太阳能 板、 12 V 汽车电池、直流电源或低压交流系统,甚至是基于碱和镍的电池或锂离子电池等。    1) 采用交流离线电源为 LED 供电   在采用交流离线电源为 LED 供电的应用中,涉及到众多不同的应用场合,如电子镇流器、荧光灯替代、交通信号灯、 LED 灯泡、街道和停车照明、建筑物照明、障碍灯和标志等。在这些从交流主电源驱动 大功率 LED 的应用中,有两种常见的电源转换技术,即在需要电流隔离 (galvanic isolation) 时使用反激转换器,或在不需要隔离时使用较为简单的降压拓扑结构。   在反激转换器方
[电源管理]
<font color='red'>LED驱动电路</font>设计应用
利用AS358设计的恒流恒压(CC/CV)电路
恒流恒压电路是利用AS358做电压、电流信号的采样和放大,电路如图3所示,分为两部分,一部分是恒流环:采样电阻Rs采样输出电流Io,经过AS358_1进行放大,放大倍数由R2/R1决定(R1=R3,R2=R4),放大后的信号通过二极管D1送到AP3003的FB管脚;另一部分是恒压环:电阻RA和RB采样输出电压Vo,经过AS358_2和二极管D2送到AP3003的FB管脚 根据 ,可以得到恒流点和恒压点的计算公式(E-1)和(E-2):  (E-1) (E-2)   其中VD1,VD2分别是二极管D1和D2的正向导通电压,VREF是AP3003内部的基准电压,根据设计要求可以选择合适的Rs,R2,R1,RA,RB
[电源管理]
利用AS358设计的<font color='red'>恒流</font>恒压(CC/CV)电路
光纤LED驱动电路的设计
  我们在研制一个阵列信号处理系统中,由于阵列天线必须放置于四周开阔地带,而阵列信号处理单元位于圆形陈列天线中央位置,这就需要在阵列信号处理单元与位于1~2km以外的微机之间进行双工通信。为了减少数据传输时间在整个系统处理时间指标中所占的比重,要求数据传输率应不小于E1(2.048Mb/s)速率,同时要求通信链路安全、可靠。我们通过对各种数据通信技术的冷库安装 分析,最终选择了光纤键路,取得了满意的效果。   1、铜介质数据链路分析   由于同时要求较高的数据传输率及较长的通信距离,在铜介质链路中不进行编码和调制很难满足指标要求,但是高速调制解调器不仅价格昂贵,而且双方握手过程费时,在要求随机实时传输数据的场会显然不适用
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved