利用新型放大器实现高性能电流检测

最新更新时间:2012-04-26来源: 21IC中国电子网关键字:放大器  高性能  电流检测 手机看文章 扫描二维码
随时随地手机看文章

大多数模拟集成电路(比较器、运算放大器、仪表放大器、基准、滤波器等)都是用来处理电压信号的。至于处理电流信号的器件,设计师们的选择却少得可怜,而且还要面对多得多的难题。这很不幸,因为直接监视和测量电流有很大的优势。通过观察电流流动,可以最好地监视电动机扭矩、螺线管受力、LED 密度、太阳能电池受光量和电池电量。所需要的只是一个能准确测量电流并将电流转换成电压的电路,这样就可以用很容易买到现有的电压器件(放大器、比较器、ADC 等)以放大、调节和测量电压。

图 1:电流检测电路概念图

  尽管电阻可以将电流转换成电压,但是只用电阻并不能组成完整的解决方案。最常见的解决方案是,用一个直接与电流串联的检测电阻,并用一个放大器来隔离和调节电阻上的电压(VSENSE)。

图 2:实际的电流检测电路

  组合放大器与检测电阻

  乍一看,将电阻与接地点串联似乎与大多数简单直接的电流检测方法一样。这种方法称为低端电流检测(图 3A),要求不存在可能使电流在检测电阻周围被分流或可能引入邻近电路电流的接地通路。如果机架构成了系统地,那么插入这样的检测电阻也许是不实际的。而且,既然地线不是理想导体,那么系统中不同位置的地电压可能不同,因此必须使用差分放大器才能实现准确测量(图 3B)。

图 3A:低端电流检测拓扑

 

图 3B:低端电流检测电路

  在进行低端电流检测时还有更严重的问题。接地通路中的电阻意味着负载“地”将随着电流的变化而变化。这可能引起系统共模误差,并在与需要相同地电平的其他系统连接时出现问题。因为测量分辨率随着 VSENSE 幅度的提高而提高,因此设计师必须以“地噪声”换取分辨率的提高。适度的 100mV 满标度 VSENSE 转换成 100mV 注入地噪声。通过在电源和负载之间放置电流检测电阻,可以避免地电平变化问题。

  这种方法称为高端电流检测。检测电阻上的差分电压仍然可用来直接测量电流,不过现在电阻上有一个非零共模电压。这种配置的技术难题是,必须从电源共模电压中分辨出小的差分检测电压(图 4)。

图 4:高端电流检测

  就低压系统而言,仪表放大器或其他轨至轨差分放大器用于监视高端检测电阻可能足够了。放大器的输出必须在不增加很大误差的情况下转换到地电平。电源电压很高时,也许需要将 VSENSE 转换到放大器输入共模范围内的电路,或者将放大器浮动到电源电压的电路。这些方法除了增加电路板空间和成本,还假定共模电压将保持在一个很窄的特定范围内。就大多数电流检测应用而言,预先考虑大的共模变化非常有用。例如,如果电流检测电路在电源电压下降时可以工作,那么它可以指示电源或负载处是否存在问题;电流过大表明限流和负载故障,电流不足指示电源故障。另一方面,电流检测电路可能面对超过电源电压的共模电压。很多电流器件,如电动机和螺线管,本质上都是感性的,通过这些器件的电流迅速变化会引起感性反激,导致检测电阻上出现大的电压摆幅。这些例子准确说明了放大器何时最有用。(1)

  简单的解决方案

  为了克服这些电流检测难题,人们创造了高端电流检测放大器。这些特殊放大器用来从高共模电压中抽取通过小检测电阻的电流产生的小差分电压。然后,检测电压被放大并被转换成以地为基准的信号。图 5 显示了高端电流检测放大器的基本拓扑。在这个图中,放大器给 RIN 加上等于 VSENSE 的电压。然后,通过 RIN 的电流流过 ROUT,提供以地为基准的输出电压。就这个基本功能而言,很明显,高端电流检测放大器应该有高输入阻抗、高增益和高增益准确度、以及宽共模范围和良好的共模抑制。也许不那么明显的是还有放大器精确度的重要性。

图 5:基本高端电流检测放大器

 关注电阻

[page]  理想情况下,电流和电压检测电路不应该对它所连接的负载造成影响。这意味着,电压检测器件应该有接近无限大的输入阻抗,这可确保不会从负载分走可观的电流。相反,电流检测器件应该有接近零的输入阻抗,这可确保不会明显地降低负载电压。高端电流检测电路(放大器+电阻)同时受到这两种要求的制约。用来检测 RSENSE 上电压的放大器必须有高输入阻抗。用来检测负载电流的电阻必须非常小。

  为了充分理解这一点,我们来看一下使用大检测电阻时的情况。因为串联电阻提高了,所以负载获得的电压降低了。外加串联电阻是能量浪费的根源,大的检测电阻可能导致过度的热耗散,从长远来看可能引起可靠性问题。

  使用大检测电阻有什么理由吗?主要的优点是提高了总的输出电压(EQ1)。这在放大器有固定增益或增益可配置性有限时可能很有用。

  [EQ1]

  检测电阻值有个限度。放大器输入范围和最大预期电流将决定最大的实际检测电阻值(EQ2)。

RSENSE_MAX = (VSENSE_MAX / ISENSE_MAX) [EQ2]


  例如,如果通过检测电阻(ISENSE MAX)的最大预期电流是 50mA,高端电流检测放大器可以接受高达 250mV(VSENSE MAX)的输入,那么最大检测电阻值是 50Ω(RSENSE_MAX)。

  理想情况下,设计师不应该被迫增加检测电阻以补偿放大器。只要放大器能以足够的增益和增益准确度工作,设计师就应该去关注最小可接受电阻值。这可以从电流检测放大器的输入失调电压算出来,必须分辨的最小电流为:

RSENSE_MIN = (VOFFSET / IRES). [EQ3]

  例如,如果要求 1mA 分辨率(IRES),高端电流检测放大器的失调电压为 1mV(VOFFSET),那么最小检测电阻为 1Ω(RSENSE MIN)。等式 3 突出了一个关键点:最小检测电阻与高端电流检测放大器的失调电压直接相关。

  深入了解现代电流检测放大器

  设计师把精准高压侧电流检测技术谨记于心, 从而开发出了新型高压侧电流检测放大器, 与先前的同类产品相比, 性能有了大幅度的提升。例如,凌力尔特公司的 LTC6102 是一种采用零漂移技术的新型高端电流检测放大器。这种放大器的输入失调电压仅为 10uV,偏压漂移最大值为 50nV/oC。与前几代电流检测放大器相比,LTC6102 可以使用小得多的检测电阻(2)。如果系统能够承受大的 VSENSE,那么LTC6102 就可以接受高达 2V 的检测电压。低失调加上这么高的最高检测电压可实现超过 106dB 的动态范围,允许LTC6102从安培级电流分辨出微安级电流。检测非常小的电流是可能的,因为任何增益值都可以用外部电阻选择。通过使用精密电阻,增益准确度可以高于 99%。

  LTC6102 也不损害其他重要的电流检测性能。其高阻抗输入将输入偏置电流限制为低于 300pA。LTC6102 可以在输入共模电压高达 105V 时工作。130dB 的共模抑制在整个 100V 输入共模电压范围内产生低于 32uV 的偏移误差(3)。就故障保护而言,LTC6102 有 1us 的响应时间,从而允许该器件在出现意外的负载或电源变化时迅速关闭电源。

  图 6:凌力尔特公司的 LTC6102 可简单直接地实现高端电流检测。用 RSENSE 和两个增益电阻就可以配置该器件。通过选择 RIN 和 ROUT,设计师可以定制功耗、响应时间和输入/输出阻抗特性

  结论

  高端电流检测放大器用来监视和控制电流时具有固有的优势。电池管理、电动机控制等领域的技术进步导致对较高共模电压、较高准确度和较高精确度的电流检测放大器的极大需求。LTC6102 率先以一套令人印象深刻的功能和卓越的精确度开辟了一片新天地。高端电流检测放大器现在已经达到了业界领先精确运算放大器的性能水平,为设计师提供了一种简单、通用和高度准确的器件,这种器件可替代过去精确度较低或较复杂的电流检测电路。

  如需更多有关电流检测的信息,请阅读凌力尔特公司编辑的 ISENSE Application Note,其中收集了广泛的电流检测电路,现在可从网址 www.linear.com.cn/currentsense 下载。

  注释:

  1 就开关或换向负载而言,在开关和负载之间安装检测电阻将给放大器加上大的且可能是高频的共模电压。即使有非常高的共模抑制比,加上大的高频共模电压的放大器也会产生 CMRR 误差。为了避免这种不必要的困难,检测电阻应该挨着电源放置,在这里不会受到换向电压影响。

  2 与失调电压为 1mV、漂移为 1uV/oC 的典型高端电流检测放大器相比,LTC6102 具有最小的计算检测电阻值(RSENSE_MIN,EQ3),就任何给定电流分辨率(IRES)而言,都至少比其他放大器低 99%。

  3 共模抑制 = 20 x Log[ΔVCM / ΔVOS]

关键字:放大器  高性能  电流检测 编辑:冰封 引用地址:利用新型放大器实现高性能电流检测

上一篇:智能MOSFET驱动器提升电源性能的设计方案
下一篇:4/8线扫描转换器在示波器中的应用

推荐阅读最新更新时间:2023-10-18 16:40

为什么运算放大器会发生振荡
虽然 Bode 图是一种很不错的分析工具,但是您可能没有还发现该图太过直观了。就运算放大器不稳定和振荡而言,Bode 图这是对常见原因的一种直观表述。 在反馈信号到达反相输入端时就会发生如图 1 中所示的完美的无延迟阻尼响应。运算放大器通过斜坡至最终阈值并在反馈信号检测到在适当输出电压时的闭合缓缓下降来进行响应。 当反馈信号延迟的时候问题就会进一步恶化。由于在环路中有延迟,放大器无法立即检测到其达到最终阈值的进程,进而以过快地向正常输出电压移动的形式表现为过响应。请注意延迟反馈越多最初斜率也就越快。反相输入无法及时接收到其已经达到并传递出正常输出电压的反馈。其将过冲目标并在最终建立时间前需要诸多连续的极性纠正。
[模拟电子]
为什么运算<font color='red'>放大器</font>会发生振荡
在高速应用中使用JFET输入放大器的优势
作者:德州仪器Bharat Agrawal 电压反馈放大器可根据器件中的晶体管类型进行分类:双极互补金属氧化物半导体(CMOS)或是结型场效应晶体管(JFET)。一些放大器同时使用这两种晶体管,在放大器各阶段中获得对应的益处。例如,JFET输入放大器包含一个采用JFET的输入差分对,可产生非常大的放大器输入阻抗,之后是使用双极晶体管的增益和输出极。 JFET输入放大器可用作测试和测量模拟前端、电流感测放大器、模数转换器(ADC)驱动器、光电二极管跨阻放大器,或通过多路复用器用作多通道传感器接口。本文将以OPA2810为例,讨论在这些应用中使用JFET输入放大器的优势。OPA2810是一款110MHz、27V、宽输入差分电压(V
[模拟电子]
在高速应用中使用JFET输入<font color='red'>放大器</font>的优势
基于非线性效应的光学逻辑门研究
全光逻辑门是实现全光信号处理的核心元件,它可以实现全光信号提取,全光地址识别,全光复用/解复用以及全光开关等,因此,在未来的全光高速通信网络和新一代光计算机中将有着巨大的应用潜力,目前,国内外均对此展开了广泛深入的研究。半导体光放大器以其体积小,光谱性能好,工作波长范围宽,响应时间短以及良好的非线性特性等优点,成为各种全光逻辑门中的主要功能器件,本文介绍了几种基于半导体光放大器中的非线性光学效应工作的全光逻辑门,并对其各自的特点进行了比较。 1 实现光学逻辑门的非线性光学原理 实现全光逻辑门主要是基于半导体光放大器中的交叉增益调制波长转换原理,在忽略放大的自发辐射引起的载流子消耗的条件下,波长的转换过程可以用以下两个方程描述:
[电源管理]
基于非线性效应的光学逻辑门研究
基于SI4432的高性能无线收发应用平台设计
近些年来,随着集成电路技术的发展,ISM频段单芯片的无线数据通信IC的性能日益提高,短距离无线应用领域也在不断地扩大,其中包括消费电子、工业控制、安防、自动抄表等诸多领域。数据的无线收发在无线产品设计中占有很大的比重。为缩短产品设计周期以及提高产品的稳定性,使产品设计工程师在设计过程中只需关注系统应用的设计,而将数据收发交付一种成熟稳定的收发系统来完成。为此,本文设计了一种基于SI4432+STM32F103的高性能无线收发平台。 1 STM32F103和SI4432芯片简介  STM32系列是采用ARM CortexTM-M3 内核的闪存微控制器,所有功能都具有业界最优的功耗水平。在结合了高性能(最高72 MHz频率)、低功耗(
[嵌入式]
DC-DC转换器初级电流检测方法
  引言   在开关电源设计中,很重要的一项内容是过载保护功能的设计,尤其是在空间领域,由于其高可靠、高风险、不可维修的特性,使得空间用DC-DC转换器要具备可靠的过载保护功能。   过载保护功能是指在负载过载情况下,能有效保护DC-DC转换器不会因过热而损坏。由于用电负载不同,对过载保护功能要求也不同。控制系统要求过载后DC-DC转换器不能断电,其采取限流保护;有效载荷系统要求可以在过载后DC-DC转换器断电,其采取截流保护。   设计过载保护就需要检测电路中的电流,DC-DC转换器的电流取样可以直接检测输出回路的电流,例如次级整流回路的电流;也可以检测初级回路的电流,例如流过功率MOSFET管的电流。
[测试测量]
DC-DC转换器初级<font color='red'>电流检测</font>方法
意法半导体推出汽车及工业专用高精度运算放大器芯片
中国,2007年5月7日 — 世界领先的运算放大器芯片供应商之一的意法半导体(纽约证券交易所:STM)推出一个新的高精度运算放大器芯片,新产品在共模宽压下,保证超低的输入偏置电压。这个特性再加上极具竞争力的价格,使新产品TS507成为车用和工业应用的理想解决方案。 TS507采用ST的一项微调专利技术,输入偏置电压最大调节幅度100微伏。这种数字电压调节是在封装后进行的,因为没有使用外部组件,数字调压方法降低了器件的总体成本。因为输入偏置电压漂移很小(在0℃-85℃范围内,最高250微伏),TS507在整个温度范围内都具有很高的精度表现。除了这些优异的精度参数外,TS507的电气特点也十分出色,例如:高开环增益(在5V下通常
[新品]
Credo推出Seagull 452系列高性能光DSP芯片——八通道/四通道/双通道DSP
Credo推出Seagull 452系列高性能光DSP芯片——八通道/四通道/双通道DSP 功耗、性能和成本经过优化,契合日益增长的AI需求 加州圣何塞和中国深圳,2023年9月5日—— Credo Technology是一家提供安全、高速连接解决方案的创新企业。Credo致力于为数据基础设施市场提供其所必须的高能效、高速率解决方案,以满足其不断增长的带宽需求 。Credo今日发布Seagull 452系列高性能、低功耗光DSP新品。该系列包括三款光DSP产品:Seagull 452(八通道),Seagull 252(四通道)以及Seagull 152(双通道)。三款产品均集成VCSEL、EML和SiPho驱动。 Cre
[嵌入式]
高性能车载电脑设计指南
一、综述   本文将介绍如何利用英特尔凌动系列CPU,搭建一个高性能,可升级的硬件平台,不仅满足防震、宽温、低功耗、稳定、安全等基本车载要求,而且支持微软 Windons 系列操作系统及无线宽带上网。让服务提供可以借助于现有的各种成熟软件及互联网平台,为高端用户提供实时路况信息、智能导航,车辆故障监测、无线通讯、移动办公、安全预警、防盗、语音控制、集中调度、辅助驾驶等高附加值应用。利用网络通讯与信息处理增长越来越快捷便利的发展趋势,与通讯运营商及各种服务供应商一起为车载电脑开拓更加广泛的应用市场。 二、采用模块化技术快速搭建车载电脑平台对于首次接触x86 硬件平台的客户,一般会遇到以下几个主要障碍:   1.1. 由
[汽车电子]
<font color='red'>高性能</font>车载电脑设计指南
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved