理解MOSFET开关损耗和主导参数

最新更新时间:2012-06-24来源: 电子发烧友关键字:MOSFET  开关损耗  主导参数 手机看文章 扫描二维码
随时随地手机看文章

        本文详细分析计算开关损耗,并论述实际状态下功率MOSFET的开通过程和自然零电压关断的过程,从而使电子工程师知道哪个参数起主导作用并更加深入理解MOSFET。

MOSFET开关损耗

1 开通过程中MOSFET开关损耗

        功率MOSFET的栅极电荷特性如图1所示。值得注意的是:下面的开通过程对应着BUCK变换器上管的开通状态,对于下管是0电压开通,因此开关损耗很小,可以忽略不计。


图1 MOSFET开关过程中栅极电荷特性

 

开通过程中,从t0时刻起,栅源极间电容开始充电,栅电压开始上升,栅极电压为

         其中:,VGS为PWM栅极驱动器的输出电压,Ron为PWM栅极驱动器内部串联导通电阻,Ciss为MOSFET输入电容,Rg为MOSFET的栅极电阻。

 VGS电压从0增加到开启阈值电压VTH前,漏极没有电流流过,时间t1为

VGS电压从VTH增加到米勒平台电压VGP的时间t2为

VGS处于米勒平台的时间t3为

t3也可以用下面公式计算:


 

        注意到了米勒平台后,漏极电流达到系统最大电流ID,就保持在电路决定的恒定最大值ID,漏极电压开始下降,MOSFET固有的转移特性使栅极电压和漏极电流保持比例的关系,漏极电流恒定,因此栅极电压也保持恒定,这样栅极电压不变,栅源极间的电容不再流过电流,驱动的电流全部流过米勒电容。过了米勒平台后,MOSFET完全导通,栅极电压和漏极电流不再受转移特性的约束,就继续地增大,直到等于驱动电路的电源的电压。        MOSFET开通损耗主要发生在t2和t3时间段。下面以一个具体的实例计算。输入电压12V,输出电压3.3V/6A,开关频率350kHz,PWM栅极驱动器电压为5V,导通电阻1.5Ω,关断的下拉电阻为0.5Ω,所用的MOSFET为AO4468,具体参数为Ciss=955pF,Coss=145pF,Crss=112pF,Rg=0.5Ω;当VGS=4.5V,Qg=9nC;当VGS=10V,Qg=17nC,Qgd=4.7nC,Qgs=3.4nC;当VGS=5V且ID=11.6A,跨导gFS=19S;当VDS=VGS且ID=250μA,VTH=2V;当VGS=4.5V且ID=10A,RDS(ON)=17.4mΩ。

开通时米勒平台电压VGP:

        计算可以得到电感L=4.7μH.,满载时电感的峰峰电流为1.454A,电感的谷点电流为5.273A,峰值电流为6.727A,所以,开通时米勒平台电压VGP=2+5.273/19=2.278V,可以计算得到:
 

  

开通过程中产生开关损耗为


        开通过程中,Crss和米勒平台时间t3成正比,计算可以得出米勒平台所占开通损耗比例为84%,因此米勒电容Crss及所对应的Qgd在MOSFET的开关损耗中起主导作用。Ciss=Crss+Cgs,Ciss所对应电荷为Qg。对于两个不同的MOSFET,两个不同的开关管,即使A管的Qg和Ciss小于B管的,但如果A管的Crss比B管的大得多时,A管的开关损耗就有可能大于B管。因此在实际选取MOSFET时,需要优先考虑米勒电容Crss的值。

        减小驱动电阻可以同时降低t3和t2,从而降低开关损耗,但是过高的开关速度会引起EMI的问题。提高栅驱动电压也可以降低t3时间。降低米勒电压,也就是降低阈值开启电压,提高跨导,也可以降低t3时间从而降低开关损耗。但过低的阈值开启会使MOSFET容易受到干扰误导通,增大跨导将增加工艺复杂程度和成本。

2 关断过程中MOSFET开关损耗

        关断的过程如图1所示,分析和上面的过程相同,需注意的就是此时要用PWM驱动器内部的下拉电阻0.5Ω和Rg串联计算,同时电流要用最大电流即峰值电流6.727A来计算关断的米勒平台电压及相关的时间值:VGP=2+6.727/19=2.354V。

关断过程中产生开关损耗为:

Crss一定时,Ciss越大,除了对开关损耗有一定的影响,还会影响开通和关断的延时时间,开通延时为图1中的t1和t2,图2中的t8和t9。


图2 断续模式工作波形

Coss产生开关损耗与对开关过程的影响1 Coss产生的开关损耗

        通常,在MOSFET关断的过程中,Coss充电,能量将储存在其中。Coss同时也影响MOSFET关断过程中的电压的上升率dVDS/dt,Coss越大,dVDS/dt就越小,这样引起的EMI就越小。反之,Coss越小,dVDS/dt就越大,就越容易产生EMI的问题。
但是,在硬开关的过程中,Coss又不能太大,因为Coss储存的能量将在MOSFET开通的过程中,放电释放能量,将产生更多的功耗降低系统的整体效率,同时在开通过程中,产生大的电流尖峰。

        开通过程中大的电流尖峰产生大的电流应力,瞬态过程中有可能损坏MOSFET,同时还会产生电流干扰,带来EMI的问题;另外,大的开通电流尖峰也会给峰值电流模式的PWM控制器带来电流检测的问题,需要更大的前沿消隐时间,防止电流误检测,从而降低了系统能够工作的最小占空比值。
Coss产生的损耗为:



        对于BUCK变换器,工作在连续模式时,开通时MOSFET的电压为输入电源电压。当工作在断续模式时,由于输出电感以输出电压为中心振荡,Coss电压值为开通瞬态时MOSFET的两端电压值,如图2所示。

2 Coss对开关过程的影响

        图1中VDS的电压波形是基于理想状态下,用工程简化方式来分析的。由于Coss存在,实际的开关过程中的电压和电流波形与图1波形会有一些差异,如图3所示。下面以关断过程为例说明。基于理想状态下,以工程简化方式,认为VDS在t7时间段内线性地从最小值上升到输入电压,电流在t8时间段内线性地从最大值下降到0。


图3 MOSFET开关过程中实际波形

       实际过程中,由于Coss影响,大部分电流从MOSFET中流过,流过Coss的非常小,甚至可以忽略不计,因此Coss的充电速度非常慢,电流VDS上升的速率也非常慢。也可以这样理解:正是因为Coss的存在,在关断的过程中,由于电容电压不能突变,因此VDS的电压一直维持在较低的电压,可以认为是ZVS,即0电压关断,功率损耗很小。

        同样的,在开通的过程中,由于Coss的存在,电容电压不能突变,因此VDS的电压一直维持在较高的电压,实际的功率损耗很大。

        在理想状态的工程简化方式下,开通损耗和关断损耗基本相同,见图1中的阴影部分。而实际的状态下,关断损耗很小而开通损耗很大,见图3中的阴影部分。

        从上面的分析可以看出:在实际的状态下,Coss将绝大部分的关断损耗转移到开通损耗中,但是总的开关功率损耗基本相同。图4波形可以看到,关断时,VDS的电压在米勒平台起始时,电压上升速度非常慢,在米勒平台快结束时开始快速上升。


图4 非连续模式开关过程中波形

        Coss越大或在DS极额外的并联更大的电容,关断时MOSFET越接近理想的ZVS,关断功率损耗越小,那么更多能量通过Coss转移到开通损耗中。为了使MOSFET整个开关周期都工作于ZVS,必须利用外部的条件和电路特性,实现其在开通过程的ZVS。如同步BUCK电路下侧续流管,由于其寄生的二极管或并联的肖特基二极管先导通,然后续流的同步MOSFET才导通,因此同步MOSFET是0电压导通ZVS,而其关断是自然的0电压关断ZVS,因此同步MOSFET在整个开关周期是0电压的开关ZVS,开关损耗非常小,几乎可以忽略不计,所以同步MOSFET只有RDS(ON)所产生的导通损耗,选取时只需要考虑RDS(ON)而不需要考虑Crss的值。

        注意到图1是基于连续电流模式下所得到的波形,对于非连续模式,由于开通前的电流为0,所以,除了Coss放电产生的功耗外,没有开关的损耗,即非连续模式下开通损耗为0。但在实际的检测中,非连续模式下仍然可以看到VGS有米勒平台,这主要是由于Coss的放电电流产生的。Coss放电快,持续的时间短,这样电流迅速降低,由于VGS和ID的受转移特性的约束,所以当电流突然降低时,VGS也会降低,VGS波形前沿的米勒平台处产生一个下降的凹坑,并伴随着振荡。

关键字:MOSFET  开关损耗  主导参数 编辑:探路者 引用地址:理解MOSFET开关损耗和主导参数

上一篇:CirrusCS5480三相电能测量解决方案
下一篇:用于反激变换器中BIMOSFET的相关性能

推荐阅读最新更新时间:2023-10-18 16:53

NEC电子推8款车用功率MOSFET 40V耐压低导通阻抗产品首次亮相
NEC电子近日完成了8款用于汽车的P沟道(注1)功率MOSFET(金属氧化物半导体场效应晶体管)小型封装产品的开发,并将于即日起开始发售样品。 此次推出的新产品主要用于继电器、电机等通过电流为数十安培的控制单元,其中NP50P04等4款产品为40V耐压、导通阻抗为业界最低的产品(注2);另外4款产品与现有的60V耐压品相比,导通阻抗最大可减至一半。 对于汽车厂商及器件厂商等用户而言,使用低导通阻抗产品可以减少电流流经时产生的热量,从而减轻电路设计时的负担。 新产品的样品价格因耐压及导通阻抗的不同而有所差异,其中NP50P04(40V耐压、导通阻抗9.6 mΩ)的样品价格为150日元/个。批量生产将从2007年年底
[新品]
华虹功率MOSFET累计出货超500万片,加速研发超高压IGBT技术
eeworld网消息,3月30日,华虹半导体宣布该公司功率器件平台累计出货量已突破500万片晶圆。其中,得益于市场对超级结MOSFET(“金氧半场效晶体管”)和IGBT(“绝缘栅双极型晶体管”)的强劲需求,华虹半导体独特且具竞争力的垂直沟槽型Super Junction MOSFET(“SJNFET”)以及场截止型IGBT累计出货量分别超过了200,000片和30,000片晶圆,并保持快速增长趋势。 功率半导体器件在移动通讯、消费电子、开关电源、马达驱动、LED驱动、新能源汽车、智能电网等领域发挥着越来越重要的作用,是降低功耗、提高效率的关键核心器件。华虹半导体拥有十五年的功率器件稳定量产经验,是全球首家、同时亦是最大的功率器件2
[半导体设计/制造]
巧妙提升数字控制电源性能的利器—MOSFET驱动器
在电源系统中,MOSFET驱动器一般仅用于将PWM控制IC的输出信号转换为高速的大电流信号,以便以最快的速度打开和关闭MOSFET。由于驱动器IC与MOSFET的位置相邻,所以就需要增加智能保护功能以增强电源的可靠性。 UCD9110或UCD9501等新上市的数字电源控制器需要具备新型的智能型集成MOSFET驱动器的支持。电源设计人员仍然对数字电源控制技术心存疑虑。他们经常将PC的蓝屏现象归咎于软件冲突。当然,这种争议会阻碍数字控制电源以及查找控制器故障期间功率级保护策略的推广。这推动了不依赖数字电源控制器信号的具备功率级内部保护功能的MOSFET驱动器的发展。 集成的超快速电流限制功能 UCD7K MOSFET驱动器接收到
[电源管理]
IDM厂看好 MOSFET下半年恐持续供不应求
虽然中美贸易战引发的总体经济不确定性,对第一季半导体市场造成冲击,但包括英飞凌(Infineon)、安森美(ON Semi)、Vishay等国际IDM大厂,在近期召开的法人说明会中不约而同表示,受惠于5G及电动车等新需求明显成长,对今年MOSFET等功率半导体市况抱持乐观看法,下半年仍有可能持续供不应求。 此外,晶圆代工厂持续受惠于IDM厂放出委外订单,第一季MOSFET晶圆代工接单维持高档。 世界先进董事长方略就指出,包括MOSFET在内的分立元件第一季投片量几乎与上季持平。业内看好大中、杰力等MOSFET供应商可望受惠,今年营运将优于去年。 英飞凌及安森美等IDM厂在法说会中指出,中美贸易战影响中国市场需求,包括M
[手机便携]
IR推出两款40V车用COOLiRFET™ 功率MOSFET 产品
2014年10月13日,北京——全球功率半导体和管理方案领导厂商 – 国际整流器公司 (International Rectifier,简称IR) 宣布推出两款40V车用COOLiRFET™ 功率MOSFET 产品——AUIRFN8459和AUIRFN8458,为需要小体积、大电流的汽车应用,比如泵电机控制、车身控制等提供基准导通电阻(Rds(on))。 在采用IR最先进的COOLiRFET™ 40V 沟道技术的车用5x6mm双PQFN功率MOSFET产品系列中,AUIRFN8459和AUIRFN8458是最先推出的两款产品。AUIRFN8459实现了基准性能,即每通道5.9mΩ的超低导通电阻,可承载50A
[汽车电子]
IR推出两款40V车用COOLiRFET™ 功率<font color='red'>MOSFET</font> 产品
基于电感升压开关型变换器的LED驱动电路设计
一、基本电路拓扑与工作原理   基于电感升压开关型变换器的LED驱动电路广泛应用于电池供电的消费类便携电子设备的背光照明中。电感升压变换器基本电路拓扑主要由升压电感器(L1 )、功率开关MOSFET( VT1)、控制电路、升压二极管(VD1 )和输出电容器(C0)组成,如图1(a )所示。 图1电感升压变换器基本电路及其工作原理图   在便携式设各中所使用的DC/DC升压变换器,其控制器和功率MOSFET (VT1)一般都是集成在同一芯片上,有的还将升压二极管(VD1 )也集成在一起,从而使外部元器件数量最少。   当控制器驱动VT1 导通时,VD1截止,L1中的电流不能突变,只能从零开始缓慢线性增
[电源管理]
基于电感升压开关型变换器的LED驱动电路设计
英飞凌推出1200 V CoolSiC MOSFET M1H芯片,以增强特性进一步提高系统能效
【2022年5月10日,德国慕尼黑讯】 英飞凌 科技股份公司发布了一项全新的 CoolSiC™技术,即CoolSiC™ MOSFET 1200 V M1H 。这款先进的碳化硅(SiC)芯片用于颇受欢迎的Easy模块系列,以及采用基于.XT互连技术的分立式封装,具有非常广泛的产品组合。M1H芯片具有很高的灵活性,适用于必须满足峰值电力需求的太阳能系统,如光伏逆变器。同时,这款芯片也是电动汽车快充、储能系统和其他工业应用的理想选择。 CoolSiC技术取得的最新进展使得栅极驱动电压窗口明显增大,从而降低了既定芯片面积下的导通电阻。与此同时,随着栅极运行窗口的扩大,栅极能很好地耐受与驱动器和布局相关的电压峰值,即使在更高开关频率下亦
[电源管理]
英飞凌推出1200 V CoolSiC <font color='red'>MOSFET</font> M1H芯片,以增强特性进一步提高系统能效
恩智浦推出全球最小的高性能MOSFET
恩智浦半导体发布了全新的小信号 MOSFET 器件系列,新产品采用了全球最小封装之一的 SOT883 进行封装。恩智浦 SOT883 MOSFET 面积超小,仅为 1.0 x 0.6 毫米 , 与 SOT23 相比,功耗和性能不相上下,却只需占据 14% 的印刷电路板空间。 SOT883 MOSFET 针对众多应用而设计,包括 DC/DC 电源转换器模块、液晶电视电源以及手机和其他便携设备的负载开关。 SOT883 MOSFET 具有超小的面积、 0.5 毫米 的超薄厚度、最佳的开关速度和非常低的 R ds (on) 值,能够帮助制造商满足消费者对更紧凑、更节能的产品的需求。 恩智浦半导体产品市场
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved