以模拟微控制器为核心构成低成本高效率的功率放大器监测器

最新更新时间:2012-06-25来源: OFweek 关键字:功率放大器  监测  节能 手机看文章 扫描二维码
随时随地手机看文章

  引言

  考虑到日益迫近的全球能源危机和人们对环境保护的期望日益增高,节能对高效无线网络的运营至关重要。功率放大器(PA)是基站和中继器的核心,其功耗可能占基站总功耗的一半。对功率放大器进行监控不仅可以提高功效、降低运营成本、提高输出功率和线性度,而且可以使系统操作人员及时发现和解决问题,进而提高可靠性和可维护性。

  ADI公司提供三种PA监测器1实现方案:一种是分立器件方案,一种是基于AD729422的12位的集成型监测和控制系统的方案,以及一种基于ADuC7026高精度模拟微控制器3的集成型方案。分立方案需要使用的器件较多,而且PCB布局复杂,PCB面积也较大,这些因素都导致较高的成本。AD7294的优点是集成度高、成本低且可靠性高,但缺点是需要使用外部微控制器(MCU)来实现PA监控功能。ADuC7026与AD7294具有很多相同的优点,主要的区别是ADuC7026包含MCU。另外,ADuC7026支持外部同步采样,这个特性在TD-SCDMA应用中很有用。

  本文介绍了一个基于ADuC7026实现功率放大器监控的参考设计,功能包括设置输出功率、监测电压驻波比(VSWR)、监测横向扩散金属氧化物半导体(LDMOS)场效应管的漏极电流和温度,并在某个参数超过预定的阈值时发出报警信号。

  系统框图

  图1给出了PA监测器的系统框图。RF信号在经由可变电压衰减器(VVA)、ADL5323预驱动器、功率放大器和双向耦合器处理后,由天线发射出去。ADuC7026的片上MCU对PA模块中两级LDMOS的温度和电流及PA模块的前向和反向功率进行采样。MCU把采样数据发送到PC以便在用户界面(UI)上显示。操作人员可通过用户界面调整系统参数。

  

  图1:系统框图。

  PA监测模块

  温度监测:功率放大器的功耗会影响其性能。PA某些时候工作在较高的静态工作点,但输出功率较低。大量的能量在LDMOS器件上被转换成热量,这不仅浪费了能量,而且降低了可靠性。监测PA的温度,调整其静态工作点可以使系统达到最佳性能。

  图2给出了温度监测器的功能框图,该系统使用ADT75数字温度传感器来监测两个LDMOS级的温度。ADT75(有8引脚MSOP和SOIC封装形式可供选择)把温度转化成分辨率为0.0625℃的数字信号,其关断模式可将电源电流降低到3µA(典型值)。

  

  图2:温度监测器功能框图。

  图3给出了温度监测程序的流程图。在收到温度检测指令后,ADuC7026 MCU首先设置温度检测标识,然后通过I2C®总线从ADT75读出温度数据,并把该数据发送到PC。接着,程序检查ADT75的过温引脚(OS/ALERT)状态,如果温度超过了阈值,则点亮LED。在收到配置温度阈值的指令时,ADuC7026从PC读入配置数据并通过I2C总线把阈值温度写入到ADT75。当微控制器收到读入温度阈值的指令时,它从ADT75读入阈值温度并把它传送到PC。

  

  图3:温度监测程序的流程图。

  电流监测: :控制PA的漏极电流,使其在温度和时间变化时保持恒定,就可以极大地改善功放的总性能,同时又可确保功放工作在调整的输出功率范围之内。影响PA漏极电流的两个主要因素是PA的高压供电线的变化和片上温度的变化。PA晶体管的漏极电压很容易受高压供电线变化的影响。我们可以用高电压分流监测器来测量LDMOS的漏极电流。如果连续地监测漏极电流,当在电源上出现电压波动时,操作人员可重新调整栅极电压使LDMOS保持在最佳工作点。

  图4给出了电流监测器的功能框图。该系统使用AD8211高压高精度分流放大器来采集PA模块中两个LDMOS级的漏极电流。AD8211的增益为固定的20V/V,在整个工作温度范围内的增益误差为±0.5%(典型值)。AD8211缓存的输出电压直接输出到模数转换器,由ADuC7026的片上ADC进行采样。漏极电流阈值由AD5243数字电位计设定,ADuC7026通过I22C总线对AD5243进行控制。系统根据ADCMP600比较器的输出来判定漏极电流是否超过或低于阈值。如果漏极电流超过阈值,系统点亮相应的LED向操作人员报警。

  

  图4:电流监测器功能框图。

  电压驻波比(VSWR)监测: VSWR是天线系统的一个关键参数,它反映天线系统中元件之间的匹配程度。反向功率影响PA的输出功率,反向功率过大会导致发射出去的信号产生失真。因而,有必要监测VSWR使基站具有最优性能。

  图5给出了VSWR监测器的功能框图。该系统使用双向耦合器和AD8364双通道TruPwr™检测器来测量前向和反向功率。AD8364双通道有效值RF功率测量子系统可精确地测量和控制信号的功率。AD8364灵活性强,可方便地对RF功率放大器、无线电收发器AGC电路和其它通讯系统实施监测和控制,其输出可用于计算VSWR和监测传输线的匹配度。较大的VSWR值表明天线出现故障,操作人员应通过调整PA增益或电源电压对系统进行保护。

  

  图5:VSWR监测器功能框图。

        自动功率控制 :根据通信系统的要求,发射机必须确保功率放大器能满足发射的需要,调整基站发射功率保持在精准值,控制输出功率在覆盖允许范围内,不至过小无法满足网络规划时的覆盖距离要求,而减少小区覆盖范围,又不会产生过强的输出信号对相邻基站造成干扰。由于过功率会引起功率放大器饱和并使信号发生非线性失真,系统应提供过功率保护功能,保证功率放大器不工作在过功率条件下。基于上述原因,必须对输出功率进行测量和控制以使之保持稳定。

  图6给出了自动功率控制回路的功能框图,该回路包含双向耦合器、TruPwr检测器、微控制器和可变电压衰减器。双向耦合器把前向功率传送到TruPwr检测器,检测器跟踪信号幅度的变化。ADuC7026的片上ADC对检测器的输出采样。微控制器比较输出功率的实际值与期望值,并使用PID算法来调整控制电压偏差,使功率放大器工作在性能最佳的工作点上。

  

  图6:自动功率控制回路的功能框图。

  图7给出了PID算法的流程图。首先,该程序设定初始控制参数Kp、Ki和Kd并设定输出功率的期望值。然后,ADC对AD8364的输出采样,采样得到的数据经滤波后转换成功率。程序根据系统的传递函数计算出输出功率的期望值与实际值之差,以及下一个期望采样值和控制电压,并对DAC寄存器进行配置。这样就完成了一个采样和控制过程周期,这个过程不断循环。

  

  图7:PID算法的流程图。

  用户界面

  UI主要用来提供人机交互界面,实时显示检测数据,并响应操作员的输入命令。图8给出了用户界面程序的流程图。程序运行后,首先要打开串行端口并启动通讯链接。然后,可以选择各功能模块进行监测和控制。

  

  图8:UI控制的流程图。

  图9给出了一个温度测试结果。用户可以随时改变高温和低温阈值。在本例中,高温阈值从35℃改到31℃。当环境温度上升到新阈值之上时,过温警报灯变红,PC发出连续的警铃声。

  

  图9:用于显示温度测试结果的界面。

  硬件连接

  图10给出了PA监测器的演示电路板的连接图。主板由6V适配器供电,它与PC机之间通过串口线相连,以便下位机ADuC7026与上位机PC通信;通过ADF4252评估板产生的RF信号,连接到主控板的RF信号输入端,而后通过如下链路输出:RF输入→可调衰减器AV103→PA前级驱动功率放大器ADL5323→双定向耦合器ZABDC10-25HP→RF输出→频谱仪Agilent 4396B。其中ADF4252评估板的输出频率通过PC机控制,PC与ADF4252之间通过一根并口转串口的电缆连接。

  

  图10:PA监测器演示电路板的硬件连接。

  结论

  该参考设计为在蜂窝基站(GSM、EDGE、UMTS、CDMA、TD-SCDMA)、点到多点和其它RF传输系统中监测和控制PA提供了一个集成的解决方案。利用ADI公司的高精度模拟微控制器ADuC7026实现PA监测器应用可以增加灵活性,因为它具有多通道高性能12位ADC和DAC,以及片上可编程逻辑阵列(PLA)。其AD转换可通过外部转换输入或PLA转换输出来启动,这个特性对需使用同步信号对前向功率进行采样的TD-SCDMA应用系统很有帮助。PLA集成到芯片上的好处非常明显:用户可以根据要求轻松、简洁地实现各种逻辑。而且各种算法,例如PID控制、VSWR监测、温度监测和电流监测等算法都可通过ADuC7026来实现,无需使用其它控制器。从系统设计的角度来看,这个集成解决方案可节省PCB面积、方便PCB布局,降低系统成本并提高系统可靠性。

关键字:功率放大器  监测  节能 编辑:探路者 引用地址:以模拟微控制器为核心构成低成本高效率的功率放大器监测器

上一篇:手摇式自发电手电筒电路原理分析
下一篇:智能集成性AC/DC电源控制器

推荐阅读最新更新时间:2023-10-18 16:54

麻省理工:机器人系统可监测单个神经元比人类更准确
  据Engadget报道,人类大脑是一个异常精细事物,科学家们一直在寻找高科技方法,希望能够更多地了解它。在脑外科领域,已经有一个智能解剖装置,它能区别肿瘤和健康组织,然后嵌入传感器的塑料薄膜就可以帮助医生确定手术的位置,甚至VR头盔还可以在手术过程中帮助医生监控病人的情况。下面就随网络通信小编一起来了解一下相关内容吧。   麻省理工学院的工程师们刚刚发表了一篇论文,讨论如何利用 机器人 从活的大脑中对单个神经元进行定位,从而记录它们的电信号。   在此之前,神经科学家依赖于“膜片钳技术(patch clamping)”来记录单个脑细胞的活动。这种方法需要一个微小的玻璃吸管与神经元的细胞膜接触,然后在细胞膜上打开一个小孔。  
[网络通信]
基于NE5534的12W音频功率放大器电路
该音频功率放大器电路具有低功率输出,但最终的音质非常出色。NE5534 IC 具有高速和极低失真,因此 IC NE5534 配置为用作前置放大器。 输入信号由IC NE5534放大,然后通过v-mosfet晶体管技术放大放大器的最终电平。二极管 D3 和 D4 功能用于输入相位的 Q1 和 Q2。 为了使这种音频功率放大器电路能够很好地工作,它需要25V对称电压电源,电流为2安培。根据如图所示的电路配置,该放大器电路能够在 4 欧姆负载下产生 12 瓦的功率。 基于12W音频功率放大器的FET技术规格 输出功率 – 12W 在 8Ω 中(最大值) 输入灵敏度 – 3.2V 均方根值(最大值) 温度 – 0.002% (
[嵌入式]
基于NE5534的12W音频<font color='red'>功率放大器</font>电路
一种便携式多参数环境监测仪的设计
摘要:介绍一种基于MSP430系列超低功耗单片机的多参数环境监测仪,详细阐明了环境参数传感器的选取、监测仪软硬件的设计与实现方法。该仪器充分利用MSP430单片机自身资源,具有小型便携、高性能、低功耗、可编程等优点,可广泛应用于诸多领域的环境参数监测与保护。 关键词:MSP430单片机 环境参数 监测仪 低功耗 本文以智能建筑为应用背景,介绍一种通用性很强的便携式多参数环境监测仪。它以MSP430F437超低功耗单片机为核心,配置新式的微型低功耗传感器,实现了建筑物内温度、湿度、光照度、有害气体浓度等参数的采集处理、存储、通信等功能。文中详细阐明了传感器的选取、硬件结构、软件流程等相关技术,并指出该仪器的特点和优势。 1
[应用]
LM386 低电压音频功率放大器
一、概述(Descrip ti on): LM386是美国国家半导体公司生产的音频功率放大 器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至 200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它的静态功耗仅为24mW,使得LM386特别适用于电池供电的场合。 LM386的封装形式有塑封8引线双列直插式和贴片式。 二、特性(Features): 静态功耗低,约为4mA,可用于电池供电。 工作电压范围宽,4-12V or 5-18V。 外围元件少。 电压增益可
[嵌入式]
LM386 低电压音频<font color='red'>功率放大器</font>
基于DSP的风电场电能质量监测装置研究设计
  随着全世界新能源风力发电的大力发展,电能质量的监测成为风电场的研究热点。风电场电能质量问题可以分为稳态电能质量与暂态电能质量问题。暂态电能质量问题通常以频谱和持续时间为特征,分为脉冲暂态和振荡暂态两大类,其主要表现形式有:电压脉冲、浪涌、暂态振荡、电压跌落、毛刺或尖峰、电压突起、电压中断及电压短时闪变等,被普遍接受的主要性能指标有电压短时变动(上升、下降、中断)、电磁暂态(脉冲、振荡)。   为了满足电能质量监测的实时性、高速性和连续性,本文选用高速数字信号处理器DSP和复杂可编程逻辑器件FPGA实现了采样和数据分析同步进行,达到了同步不间断地监测电能质量的目的,并采用CAN总线通信方式与远方控制中心通信,使分析的数据结
[嵌入式]
基于DSP的风电场电能质量<font color='red'>监测</font>装置研究设计
一种节能型视频监控终端的设计
  摘要: 设计了一种节能型视频监控终端。该终端以 TMS320DM642 芯片为核心,在 摄像头 、图像解码芯片 TVP5150 、红外 传感器 等外围芯片的协助下, 能有效监控区域人员出入情况, 并仅在有人员进入监控区域时才开始视频图像的采集、处理、传输等,既达到了监控目的,又节约了部分电能。   视频 监控系统 越来越多地走进人们的生活, 系统节能也是 电子 系统必须考虑的一个重要参数。对一个少有人出入的场合, 采用不间断的实时监控不仅没有必要,也会浪费很多的电能。针对这种情况, 本文设计了一个无人值守的智能监控终端。在没有人进入监控区域时,监控终端处于低能耗的休眠状态; 当 红外传感器 检测到有人进入监控区域时, 终端
[安防电子]
一种<font color='red'>节能</font>型视频监控终端的设计
基于IEEE 802.15.4的无线传感器网络的设计与实现
0 引言 基于IEEE802.15.4的无线传感器网络由于廉价、简单、低功耗、低数据传输速率(250Kbit/s)以及工作在免申请的ISM(工业、科学和医疗)频段的特点 ,将在自动控制、环境监测等领域得到广泛应用,在对无线传感器网络深入研究的基础上,我们选用了Helicomm公司新推出的IP-link1200模块搭建了一个验证系统,实现了对目标点温度指标与湿度指标的实时监测控制功能。 1 验证系统总体方案设计 无线传感器网络采用大量具有多功能多信息信号获取能力的传感器,利用自组织无线接入网络与传感器控制器连接,构成无线传感器网络,典型的网络结构如图1所示。 无线传感器节点
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved