本文章将说明如何与一个外部电源并行地使用XC9131H,用来配置一个“OR 电路”。这个提出的解决方案很简单,因为:
· 外置元器件数量少(如果使用状况允许,甚至可以不使用 LDO。在后续文章中解释原因)。
· 为了在这两种电源之间切换,不需要调整 XC9131H 的EN 和MODE 引脚的信号。
这一解释,不仅适用于XC9131H,而且还适用于XC9135C、XC9135K 和XC9136N。我们将提到许多VSET, VBAT, VEXT 和VOUT 。
以下是如何定义这些参照电压的:
· VSET:XC9131H 用辅助电阻RFB1、RFB2 和内部基准电压VREF试行设定的输出电压。
· VBAT:通过BAT 引脚提供给XC9131H 的电池电压。
· VEXT:来自外部电源的电压。如果使用了LDO,则为LDO 的输出电压。
· VOUT:“OR 电路”的输出电压。这正是XC9131H 电路的实际(ACTUAL)输出电压 – 而VSET 只是XC9131H 的输出电压的目
标值(TARGEteD)。当切断与外部连接的电池并且VSET > VEXT 时,VSET 与VOUT 相等。
4 个电压都能从以下的电路图中看到。
在以上的电路图中,能看到 EN = ‘High’ (IC 使能) 并且MODE = ‘Low’ (IC 工作于PWM/PFM 模式)。如以前所述,当电路工作时不需要调整这些电压电平。
我们有三种主要的情况:
A) 不连接外部电源(USB, AC/DC 适配器等)
在这种情况下,XC9131H 将为输出电路提供电源,并设定输出电压。
B) 连接了外部电源并且其电压高于XC9131H 的VSET
在这种情况下,将由外部电源提供电路的输出。如以前所述,XC9131H 的EN 引脚为‘High’,所以XC9131H 正在工作,但是,反
馈到XC9131H 的电压通知此IC 输出电压过高,使IC 基本上停止振荡(不再发送脉冲来导通两个集成的场效应管)并且由XC6227
提供输出。
C) 连接了外部电源并且其电压低于XC9131H 的VSET
在这种情况下,XC9131H 通过反馈网络检测到输出电压比设定的目标 VSET 低许多。XC9131H 开始工作并且向输出端提供电流。
因此,外部电源的电压(如果使用一个LDO,将不是VEXT 而是LDO 之前的电压)将低于VOUT,这意味着将流过逆向电流。如果使用
一个LDO,类似包含防止逆向电流的XC6227,将不用担心这种电流,因为LDO 和外部电源都将受保护。
但是,但如果外部电源能接收少量的逆向电流(如果认为外部电源足够理想地调整电压),甚至可以不要求增加LDO。
FAQ(设计上的限制):
为什么使用XC9131F 时不能附带OR 电路?
只单独使用XC9131 电路(也就是说不并行使用外部电源),建议用XC9131H 取代XC9131F,其优点在于因为追加了提供为其CL 放电的功能。
但是,在使用PFM 模式、并行附带外部电源使用XC9131 电路时,XC9131F 工作在一个不希望的方式,当其输出电压(VSET)低于VEXT。在这些条件下,有的P-沟道驱动晶体管将处于导通‘ON’的风险状态,允许逆向电流从外部电源流入XC9131F。
这个逆向电流会容易地损坏XC9131F。
在同样条件下(PFM 模式,VBAT < VSET < VEXT),XC9131H 的P-沟道驱动器将总是处于断开‘OFF’,这意味着将永远不会允许逆向电流通过IC 的VOUT 引脚流入IC。这种安全行为可保证XC9131H 使用OR 电路。
为什么不能把MODE 引脚设定为‘High’?
通过把MODE 引脚设定为‘High’,XC9131H 将完全工作在同步整流PWM 模式。在这种模式下,两个集成场效应管中的一个总是会导通。这就是不建议采用这种配置的原因。
实际上,当VEXT 高于由XC9131H 设定的输出电压(记住,称后者为VSET),IC 将尽可能地降低其占空比以至于输出电压能降低到与VSET 相同的电压值。降低占空比意味着大多数时间把N-沟道晶体管调节到切断‘OFF’,并且因为晶体管不能同时成为切断‘OFF’,P-沟道晶体管将保持为‘ON’。其结果在于逆向电流能通过其VOUT 引脚穿透XC9131H,通过P-沟道晶体管流入并损坏XC9131H 的内部电路。
为了回避这个问题,把MODE 引脚设定为‘Low’,使XC9131H 工作于PWM/PFM 模式,这样两个晶体管都能同时成为‘OFF’。
那样,能防止逆向电流通过VOUT 引脚进入XC9131H。
能用简单的文字来综合这个状态,可以认为,当VSET 比VEXT 低,XC9131H 难以提供任何电流,所以负载电流小。概括归纳如下:
· 当 MODE 引脚处于低‘Low’,如果负载电流小,IC 将工作于PFM 模式。因为处于PFM 模式,并且因为 VSET < VEXT,P-沟道晶体管总是处于‘OFF’并且保护IC 不受逆向电流影响。
· 当 MODE 引脚处于高‘High’,如果负载电流小,IC 将工作于PWM 模式。在这个模式,如果IC 在1.2MHz 产生振荡并且P-沟道驱动晶体管经常处于导通‘ON’,将有一些逆向电流从VOUT 流入VBAT 。
注意:当然,当负载电流增加时,如XC9131H(其MODE 引脚设定为‘Low’)从PFM 转换为PWM,逆向电流将不成为任何问题。这是因为,当转换为PWM 模式时,XC9131H 将工作于持续导通模式,所以逆向电流将不再出现。
为什么XC9131H 的VBAT 有时会高于或接近其VOUT·
上述配置典型应用于诸如USB 供电并联了一个带锂离子电池XC9131 电路。 在这种情况下,当输入电压(VBAT)将为4.2V 或更低时,XC9131H 的VOUT 大约为5V。实际上,VBAT 总是低于VOUT 使设计变得极为简单。如果设计要求VBAT 有时非常接近 (或高于) VOUT, 请与我们联系,对于它的可行性我们将给出建议。
上一篇:DC/DC转换器的种类和特点
下一篇:DC/DC 转换器与线圈一体型—XCL205/XCL206/XCL207 系列
推荐阅读最新更新时间:2023-10-17 15:00
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- TI首届低功耗设计大赛之玩转MSP430 FRAM MCU
- 上演你的“ADI实验室电路”DIY!
- TI有奖直播|C2000™ F280013x实现更低成本且更高效的实时控制方案
- 有奖问答|ADI应用之旅——工业大机器健康篇
- 与PI一起探索 LinkSwitch-TN2 的秘密看视频答题赢好礼!
- 助力高效、绿色、安全,与Nexperia一起解密高质量汽车设计秘诀!
- 读故事写评语喽~ 踩过坑的你是否期待更贴心智能的客户支持,KeysightCare邀您抢楼赢礼!
- 有奖直播|是德科技感恩月—遇见KeysightCare - 贵重仪器安全避坑指南
- 限时免费下载|NI《O-RAN简介》
- 幸运十一月,器件购买e问e答!