多节锂电池串联的电池保护板实现方案

最新更新时间:2012-07-31来源: 21ic关键字:锂电池  串联  电池保护 手机看文章 扫描二维码
随时随地手机看文章

成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。

本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。

锂电池组保护板均衡充电基本工作原理

采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。

 

 

图1 具备均衡充电能力的锂电池组保护板示意图

当锂电池组充电时,外接电源正负极分别接电池组正负极BAT+和BAT-两端,充电电流流经电池组正极BAT+、电池组中单节锂电池1~N、放电控制开关器件、充电控制开关器件、电池组负极BAT-,电流流向如图2所示。

 

 

图2 充电过程

系统中控制电路部分单节锂电池保护芯片的充电过电压保护控制信号经光耦隔离后并联输出,为主电路中充电开关器件的导通提供栅极电压;如某一节或几节锂电池在充电过程中先进入过电压保护状态,则由过电压保护信号控制并联在单节锂电池正负极两端的分流放电支路放电,同时将串接在充电回路中的对应单体锂电池断离出充电回路。

锂电池组串联充电时,忽略单节电池容量差别的影响,一般内阻较小的电池先充满。此时,相应的过电压保护信号控制分流放电支路的开关器件闭合,在原电池两端并联上一个分流电阻。根据电池的PNGV等效电路模型,此时分流支路电阻相当于先充满的单节锂电池的负载,该电池通过其放电,使电池端电压维持在充满状态附近一个极小的范围内。假设第1节锂电池先充电完成,进入过电压保护状态,则主电路及分流放电支路中电流流向如图3所示。当所有单节电池均充电进入过电压保护状态时,全部单节锂电池电压大小在误差范围内完全相等,各节保护芯片充电保护控制信号均变低,无法为主电路中的充电控制开关器件提供栅极偏压,使其关断,主回路断开,即实现均衡充电,充电过程完成。

 

 

图3 分流均衡过程

当电池组放电时,外接负载分别接电池组正负极BAT+和BAT-两端,放电电流流经电池组负极BAT-、充电控制开关器件、放电控制开关器件、电池组中单节锂电池N~1和电池组正极BAT+,电流流向如图4所示。系统中控制电路部分单节锂电池保护芯片的放电欠电压保护、过流和短路保护控制信号经光耦隔离后串联输出,为主电路中放电开关器件的导通提供栅极电压;一旦电池组在放电过程中遇到单节锂电池欠电压或者过流和短路等特殊情况,对应的单节锂电池放电保护控制信号变低,无法为主电路中的放电控制开关器件提供栅极偏压,使其关断,主回路断开,即结束放电使用过程。

 

 

 

 

图4 放电过程

一般锂电池采用恒流-恒压(TAPER)型充电控制,恒压充电时,充电电流近似指数规律减小。系统中充放电主回路的开关器件可根据外部电路要求满足的最大工作电流和工作电压选型。

控制电路的单节锂电池保护芯片可根据待保护的单节锂电池的电压等级、保护延迟时间等选型。

单节电池两端并接的放电支路电阻可根据锂电池充电器的充电电压大小以及锂电池的参数和放电电流的大小计算得出。均衡电流应合理选择,如果太小,均衡效果不明显;如果太大,系统的能量损耗大,均衡效率低,对锂电池组热管理要求高,一般电流大小可设计在50~100mA之间。

分流放电支路电阻可采用功率电阻或电阻网络实现。这里采用电阻网络实现分流放电支路电阻较为合理,可以有效消除电阻偏差的影响,此外,还能起到降低热功耗的作用。

均衡充电保护板电路工作仿真模型

根据上述均衡充电保护板电路工作的基本原理,在Matlab/Simulink环境下搭建了系统仿真模型,模拟锂电池组充放电过程中保护板工作的情况,验证该设计方案的可行性。为简单起见,给出了锂电池组仅由2节锂电池串联的仿真模型,如图5所示。

 

 

图5 2节锂电池串联均充保护仿真模型

模型中用受控电压源代替单节锂电池,模拟电池充放电的情况。图5中,Rs为串联电池组的电池总内阻,RL为负载电阻,Rd为分流放电支路电阻。所采用的单节锂电池保护芯片S28241封装为一个子系统,使整体模型表达时更为简洁。

保护芯片子系统模型主要用逻辑运算模块、符号函数模块、一维查表模块、积分模块、延时模块、开关模块、数学运算模块等模拟了保护动作的时序与逻辑。由于仿真环境与真实电路存在一定的差别,仿真时不需要滤波和强弱电隔离,而且多余的模块容易导致仿真时间的冗长。因此,在实际仿真过程中,去除了滤波、光耦隔离、电平调理等电路,并把为大电流分流设计的电阻网络改为单电阻,降低了仿真系统的复杂程度。建立完整的系统仿真模型时,要注意不同模块的输入输出数据和信号类型可能存在差异,必须正确排列模块的连接顺序,必要时进行数据类型的转换,模型中用电压检测模块实现了强弱信号的转换连接问题。

仿真模型中受控电压源的给定信号在波形大体一致的前提下可有微小差别,以代表电池个体充放电的差异。图6为电池组中单节电池电压检测仿真结果,可见采用过流放电支路均充的办法,该电路可正常工作。

 

 

 

 

图6 锂电池电压检测仿真结果

系统实验

实际应用中,针对某品牌电动自行车生产厂的需求,设计实现了2组并联、10节串联的36V8A·h锰酸锂动力电池组保护板,其中单节锂电池保护芯片采用日本精工公司的S28241,保护板主要由主电路、控制电路、分流放电支路以及滤波、光耦隔离和电平调理电路等部分组成,其基本结构如图7所示。放电支路电流选择在800mA左右,采用510Ω电阻串并联构成电阻网络。

 

 

图7 锂电池组保护板基本结构

调试工作主要分为电压测试和电流测试两部分。电压测试包括充电性能检测过电压、均充以及放电性能检测欠电压两步。可以选择采用电池模拟电源供应器代替实际的电池组进行测试,由于多节电池串联,该方案一次投入的测试成本较高。也可以使用装配好的电池组直接进行测试,对电池组循环充放电,观测过压和欠压时保护装置是否正常动作,记录过充保护时各节电池的实时电压,判断均衡充电的性能。但此方案一次测试耗费时间较长。对电池组作充电性能检测时,采用3位半精度电压表对10节电池的充电电压监测,可见各节电池都在正常工作电压范围内,并且单体之间的差异很小,充电过程中电压偏差小于100mV,满充电压4.2V、电压偏差小于50mV。电流测试部分包括过流检测和短路检测两步。过流检测可在电阻负载与电源回路间串接一电流表,缓慢减小负载,当电流增大到过流值时,看电流表是否指示断流。短路检测可直接短接电池组正负极来观测电流表状态。在确定器件完好,电路焊接无误的前提下,也可直接通过保护板上电源指示灯的状态进行电流测试。

实际使用中,考虑到外部干扰可能会引起电池电压不稳定的情况,这样会造成电压极短时间的过压或欠压,从而导致电池保护电路错误判断,因此在保护芯片配有相应的延时逻辑,必要时可在保护板上添加延时电路,这样将有效降低外部干扰造成保护电路误动作的可能性。由于电池组不工作时,保护板上各开关器件处于断开状态,故静态损耗几乎为0。当系统工作时,主要损耗为主电路中2个MOS管上的通态损耗,当充电状态下均衡电路工作时,分流支路中电阻热损耗较大,但时间较短,整体动态损耗在电池组正常工作的周期内处于可以接受的水平。

经测试,该保护电路的设计能够满足串联锂电池组保护的需要,保护功能齐全,能可靠地进行过充电、过放电的保护,同时实现均衡充电功能。

根据应用的需要,在改变保护芯片型号和串联数,电路中开关器件和能耗元件的功率等级之后,可对任意结构和电压等级的动力锂电池组实现保护和均充。如采用台湾富晶公司的FS361A单节锂电池保护芯片可实现3组并联、12串磷酸铁锂电池组保护板设计等。最终的多款工业产品价格合理,经3年市场检验无返修产品。

结论

本文采用单节锂电池保护芯片设计实现了多节锂电池串联的电池组保护板,除可完成必要的过电压、欠电压、过电流和短路保护功能外,还可以实现均衡充电功能。仿真和实验结果验证了该方案的可行性,市场使用情况检验了该设计的稳定性。

关键字:锂电池  串联  电池保护 编辑:探路者 引用地址:多节锂电池串联的电池保护板实现方案

上一篇:通用串行总线技术(USB OTG)提供电源管理最佳方案
下一篇:180W的音响开关电源

推荐阅读最新更新时间:2023-10-17 15:00

新能源汽车锂电池的使用寿命如何?
目前新能源汽车锂电池主比较主流的有两个大类:三元锂电池和磷酸铁锂电池,以下是这两类电池在这几年的价格走势。 由于国家新能源汽车补贴政策更加倾向于高能量密度,所以,三元锂电池慢慢取代了磷酸铁锂电池。但磷酸铁锂也有非常明显的优点:电池耐高温、安全稳定性强、价格实惠、循环性能更好的优势; 而三元锂电池电压平台很高,相同的体积或者重量下,三元锂电池的比能量、比功率更大。另外,在大倍率充电和耐低温性能等方面,三元锂电池有很大优势。 说起电池的使用寿命,其实更加专业说法应该是电池的循坏使用次数。 根据不同厂家电芯的产品品质,模组及PACK的工艺等,会有很大的差异,但一般来讲,1500次的循环使用寿命是一个正常水平。
[汽车电子]
新能源汽车<font color='red'>锂电池</font>的使用寿命如何?
蔚来副总裁曾士哲谈三元铁锂电池:方案难以被复制,最难的是控制算法
特斯拉、小鹏汽车之后,蔚来也加入到磷酸铁锂大军。 不过,蔚来没打算继续忍受磷酸铁锂电池的顽疾。 日前,蔚来推出了75度(kW·h)三元铁锂混装电池包,用以对该公司的70度三元锂电池包进行升级,预计11月开始交付。 70度电池包是蔚来投放的第一代电池包产品,在2017年12月的首届NIO Day上发布,于2018年6月交付,至今已经服役3年多,是蔚来汽车的基础款电池包,也是蔚来交付量最广的电池包。但这款电池显然难以匹配今天的用户需求,可用范围加上冬季低温,续航打折到200多公里的情况并不鲜见。 而对这样的基础配置进行替代性升级,蔚来的动作既要快,又要十分谨慎。 从命名上能看出,蔚来下了功夫。动力电池最常用的有两种技术
[汽车电子]
蔚来副总裁曾士哲谈三元铁<font color='red'>锂电池</font>:方案难以被复制,最难的是控制算法
石墨负极密集投产 硅碳助力突破300Wh/kg比能量
受益于全球汽车电动化进程的快速推进, 锂电 负极材料需求呈现高速增长态势。此前有业内机构预测,2020年全球动力电池负极材料需求量约28万吨;到2025年仅中国动力电池需求量就将达到310GWh,相应负极材料需求量将达26万吨,市场空间十分巨大。 石墨负极投产加速 浦项化学近日表示, 电动汽车 二次电池市场预计将从2020年的194GWh增长到2023年的366GWh。因此,对人造石墨负极材料的需求也将剧增,有必要扩充生产能力。浦项化学计划以2023年的产量为基础,扩增天然石墨负极材料10.5万吨、1.6万吨人造石墨以及9万吨的正负极材料,提高全球市场份额。 据韩国媒体报道,浦项化学决定投资2177亿韩元(约合1.
[汽车电子]
石墨负极密集投产 硅碳助力突破300Wh/kg比能量
特斯拉支持的电池团队正研发单晶无钴锂电池 可降低电池成本
据外媒报道,加拿大戴尔豪斯大学(Dalhousie University)Jeff Dahn电池实验室正在研究一种新型锂离子电池化学物质,采用单晶、无钴阴极并掺杂钨,以提升电池性能和延长使用寿命。Jeff Dahn电池实验室因其与特斯拉之间的关系而闻名。 单晶电池(图片来源:autoevolution.com) 特斯拉被认为是拥有最先进锂离子电池技术的公司之一,特斯拉汽车配备的电池是目前市场上性能最好、最耐用的电池之一。很少有人知道,特斯拉在该领域的很多技术成果归功于锂离子电池研发的先驱Jeff Dahn。Dahn于20世纪70年代末开始研究锂离子电池,现在其在加拿大戴尔豪斯大学领导一个电池研究实验室。
[汽车电子]
特斯拉支持的电池团队正研发单晶无钴<font color='red'>锂电池</font> 可降低电池成本
如何应用开关PowerPath管理器来提高锂离子电池充电速度
  手持式产品设计师争先恐后地在外形日趋小巧的设备之中集成尽可能多的“时尚”功能。屏幕大而明亮的彩色显示器、Wi-Fi、WiMax、蓝牙、 GPS、照相机、手机、触摸屏、电影播放器、音乐播放器和收音机等等,只不过是当今电池供电型便携式设备众多常见功能当中的一小部分。在这么狭小的空间里集成如此之多的功能所面临的一大问题是:这种“时尚”产品在使用过程中必须保持“低温”状态。在手持式设备中,最大限度地降低散逸热是需要优先考虑的因素,而电池充电器是一个重要的发热源。   多年来,手持式设备的一个组件几乎一成不变,那就是锂离子电池。尽管当今电池的容量已经从几百毫安时 (mAh) 增加至几安时 (Ah),以适应现代便携式产品不断扩充的功能
[电源管理]
如何应用开关PowerPath管理器来提高锂离子电池充电速度
韩国电池企业进入中国,将对锂电池产业产生什么影响?
当前,中韩关系保持良好发展态势。韩国电池企业在中国新能源汽车市场失去了高速发展的三年,如今正厉兵秣马,准备继续在中国加大投资增加产能。如何看待韩国电池企业进入中国市场是一个值得探讨的话题。 韩国电池的引入与否,争议很大,2016年初到2018年中这三年,确实造成了一些影响。 首先,韩国电芯无法获取补贴,大巴和部分乘用车企业只能在国内电芯企业里选择,客观上助长了国内电芯企业大举投资,造成一段时间的冲量和供不应求,使得大、小电池企业纷纷通过各种投资手段扩大产能,而实际能够稳定供给,达到合格汽车零部件供应商水平的却很少。 由于韩国电芯2016年无法进入中国市场,部分车企延缓了电池电芯到模组和模组到Pack的工艺投入,导致电池企业和汽车企
[汽车电子]
RLC串联电路谐振特性的Multisim仿真
    RLC串联电路具有选频特性,当外加电压源信号的频率等于电路固有频率时产生谐振时,回路总阻抗的虚部为零、回路电流的幅度最大,当外加电压源信号的频率偏离电路固有频率时,回路电流的幅度将减小。用通频带宽及品质因数描述RLC串联电路的选频特性。     Multisim仿真软件是由加拿大InteractiveImageTechnologies公司开发的一种基于SPICE工业标准的EDA软件,它就像一个真正的实验工作台,将电路原路图的输入、虚拟仪器的测试分析和结果的图形显示等集成到一个设计窗口。     用Multisim仿真软件进行RLCRLC串联电路谐振特性波形仿真分析,以虚拟仪器中的函数信号发生器或元器件库中的交流电压源做实验
[电源管理]
RLC<font color='red'>串联</font>电路谐振特性的Multisim仿真
采用2mm x 3mm DFN 封装的双输出升压型转换器可驱动多达6 个白光LED 和一个OLED 的显示器
2007 年 6 月 13 日 - 北京 - 凌力尔特公司( Linear Technology Corporation )推出双输出升压型转换器 LT3498 ,该器件含有一个 2.3MHz PWM LED 驱动器和一个低噪声 OLED 驱动器。 LT3498 的每个通道都有内部电源开关和肖特基二极管,这些都包含在 2mm x 3mm 的 DFN 封装内。该器件的 2.5V 至 12V 宽输入电压范围使其能够用高达 12V 的固定输入轨单节锂离子电池工作,从而提供高达 32V 的输出。每个转换器都可以独立调光或停机。采用单
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved