液晶显示器,简称LCD。世界上第一台液晶显示设备出现在20世纪70年代初,被称之为扭曲向列液晶显示器。尽管是单色显示,它仍被推广到了电子表、计算器等领域。80年代,超扭曲向列液晶显示器出现,同时薄膜晶体管液晶显示器技术被研发出来,但液晶技术仍未成熟,难以普及。80年代末90年代初,日本掌握了STN-LCD及TFT-LCD生产技术,LCD工业开始高速发展。液晶是一种介于固态和液态之间的物质,是具有规则性分子排列的有机化合物,如果把它加热会呈现透明状的液体状态,把它冷却则会出现结晶颗粒的混浊固体状态。
1 LCD TV电源架构的介绍
图1所示为LCD TV的电源架构,图中架构的输入电压为90-265V,输入频率从47Hz到63Hz,经过调试整流后会经过PFC架构,由于本文主要针对MOS,因此图中没有表示出调试整流部分。PFC根据所使用的IC选择采用DCM或者CCM。从PFC出来后有一个PWM,如果输出功率小于65W,则PWM端采用Flyback或QR模式。现在LCD TV常用的是半桥共振和LLC架构。5V一侧有备用电源,目前LCD TV的备用电源通常采用的是IC绑定MOS。
图2所示为一个实际的TV板。从图1的电源架构角度看,该电路板中有两个SteP EMI内核,图中标记了红色的部分有一个PFC MOSFET,目前Vishay主推IRFP27N60KPBF,PWM的MOSFET采用的是半桥LLC架构,这一部分用500V MOS即可,该电路板使用的是IRFB840APBF。此外还有3组输出,即5V、12V和24V,以及一个5V的备用电源。
2 拓扑结构及工作原理
PFC即Power Factor CorrectiON,是一个升压式架构。当PFC控制器的电源大于70W小于200W时,通常会采用DCM结构,这种结构电压比较高,通常需要选择600或650V的MOS。当电源大于200W时,通常采用CCM结构。对于一次侧PWM拓扑架构,如图3所示,一般采用的是Flyback架构。电源为65W或90W以下的适配器会采用Flyback架构,26“和32”电视也可能采用Flyback架构。半桥结构需要两个MOS,而全桥结构需要4个MOS。其实半桥和全桥式架构比较适用于大电源中。目前广为接受的TV电源主要是LLC架构,是由两个MOS Q1和Q2串联Cr、Lr和Lm,以及一个变压器组成,如图3中右下图所示。
3 零电压切换
由于共振切换方式中电压电流交叉面积变小,相对开关损耗变小,效率变高,温度降低,因此通常采用共振切换的方式,目前最常用的是零电压切换。由于采用LC架构,其共振频率为 f_{r}=frac{1}{2πsqrt{L_{r}C_{r}}},当操作频率大于共振频率时,则操作在ZVS(零电压切换)架构上。从图4中可以看到,当电流增加时电压为零,电压增加时电流为零。
4 LLC共振转换器
图5所示为半桥共振LLC共振转换器,这种架构根据 f_{r}=frac{1}{2πsqrt{L_{r}C_{r}}}计算出共振频率的第一个点和第二个点。一般情况下希望将LLC共振设计在ZVS区域内。如果在ZCS区域内损耗比较大,只需将开关频率设计成大于共振频率即可实现。图5中右上角的图表示了开关频率随着电压增益变换关系图。共振LLC转换器应用于LCD TV时的优点有:
1)高效率:初级MOS零电压切换几乎没有损耗,而且次级整流二极管为ZCS切换,损耗较少,因此整体效率得到提升;
2)高电源密度;
3)良好的EMI(低dV/dt和dI/dt);
4)更好的交叉调整率;
5)较低的输出纹波噪声;
6)低热扰动
7)节约成本
5 LLC拓扑的工作原理
图6所示为LLC拓扑的工作原理。可以看到左边为两个MOS(高压MOS和低压MOS)串联两个电感,一个电容和一个变压器。二次侧部分有两个整流二极管,为非同步整流方式。图的右侧为电流与电压变化分段示意图。在T0-T1阶段,两个MOS没有导通,电流通过MOS的二极管逆流回去;在T1-T2阶段,高压侧MOS导通,电流从VDC流到地,在二次侧部分的二极管导通;T2-T3唯一改变的是二次侧的二极管关断,电流从Vout流出,两边为隔离状态,高压侧MOS还是导通,低压侧MOS还是关闭的;T3-T4阶段高压MOS关掉,低压MOS没有导通,但是电流通过低压侧MOS的二极管,二次侧的二极管也导通;T4-T5阶段低压MOS完全导通,二次侧的二极管也完全导通;T5-T6阶段二次侧二极管关断,低压MOS导通。
6 Vishay目前拥有的LCD TV电源的产品
Vishay目前主推的LCD TV高压MOS为Gen6,是一种比较新的技术,以6"晶圆制造,其中包括K-Series与L-Series,可以从器件命名的最后一个字母看到。L-Series很适合AC/DC SMPS ZVS全桥中的初级开关。图7和图8列出了1M的电压产品。
7 应用实例
图9所示为一个采用LLC的LCD TV应用,其中用红色圈起来的部分为针对PFC的MOS和半桥共振的MOS所推荐的型号。在半桥共振部分,实际应用中选择500V的MOS即可。
上一篇:一种新的高精密电压源设计方案
下一篇:罗克韦尔自动化解决方案有望确立太阳能发电厂业界标准
推荐阅读最新更新时间:2023-10-17 15:00
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况