短路电流计算是电力系统3大计算之一,是进行电气接线方式选择、电气设备选择、继电保护整定和校核的基础。此变电站设计需要设计的内容是:变电站围墙内的110 kV及10 kV配电装置,主变压器,10 kV电容器,自补装置,站内交直流电系统,控制保护,防雷接地等一、二次部分。文中设计的要求:主变压器容量,由需用系数法计算;电压等级,110/10 kV;110 kV进线,2回电缆进线;10 kV进线,按要求得20回电缆出线(其中两回为备用)。文中主要分析了变电站设计过程具体的短路电流计算方法。
1 概述
电力系统中可能发生的短路故障,主要有三相短路、两相短路和单相短路。一般情况下,三相短路电流都大于两相和单相短路电流。在中性点直接接地的电网中,以一相对地的短路故障为最多,约占全部短路故障的90%,在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。电力系统中出现短路故障时,系统功率分布的突然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。
在计算短路电流时,由于本次变电站设计属于未知系统,所以我们把这个电源容量视为无穷大的电力系统。在这样的系统内,当某处发生短路时,电源电压维持不变,即短路电流周期分量在整个短路过程中不衰减。
2 短路电流计算的原则
1)计算短路电流用于验算电器和导体的开断电流、动稳定和热稳定时,应按本工程的计划内容计算。一般应以最大运行方式下的三相短路电流为依据,如变电所一般以2台或3台主变压器容量计算,并适当考虑电网5~10年的远景发展规划。
2)计算短路电流时,应按可能发生最大短路电流的正常接线方式进行计算。短路点应选择在短路电流为最大的点。
3)导体和电器的动稳定、热稳定以及电器的开断电流,一般按三相短路电流验算。
4)计算10 kV及以上高压电网短路电流时,一般将原件的电阻忽略不计,如果短路电路中总电阻∑R大于总电抗∑X的1/3时,则线路和其他元件的有效电阻仍应计入。
5)计算1 000 kV以下低压电网短路电流时,一般不允许忽略短路回路中电气设备的电阻值,如配电变压器的电阻、低压线路的电阻、不太长的母线和电缆、电流互感器的一次绕组、自动开关的过电流线圈及自动开关和隔离开关触头的接触电阻等,因为这些电阻对低压短路电流都有影响。
6)计算某一电压级的短路电流时,应用平均电压。
7)计算高压系统电路电流时,一般采用标幺值法、短路功率法进行计算。计算1 000 V以下低压配电网的短路电流时,一般采用有名值方法计算,即电压V,电流kA,电阻mΩ。
3 三相短路电流计算
3.1 变压器高电压侧K1点短路
3.2 变压器的低压侧K2点短路
由上计算可得,三相短路情况发生时,变压器高压侧最大短路电流为14.673 kA,最小短路电流为9.0827 kA;变压器低压侧最大短路电流为27.399 kA,最小短路电流为14.159kA。
4 结论
随着国民经济和地区经济的快速发展,对电力的需求增长迅速。变电站升级改造和变电站扩容改造已成为供电公司的重要规划内容,由于变电站改造都将改变网络结构,网络结构的改变必将影响各个节点的短路电流。准确地进行短路电流计算就能根据变电站电力系统的实际情况合理地确定限制短路电流的方案,或者限制某种运行方式的出现,得到既可靠又经济的主接线方案。
总之,在评价和比较各种主接线方案选出最佳方案时,短路电流计算是一项很重要的基础性工作。因此,在电力设计中选择电气设备必须计算短路电流,短路电流的计算是电气专业设计不可缺少的环节,是电力设计中最重要的计算之一。文中通过短路电流的计算,为变电站设计中电气设备的选择和继电保护整定垫定了基础。
上一篇:基于ADE7878的多路电量检测系统设计
下一篇:内阻交流放电法在蓄电池在线监测中的应用
推荐阅读最新更新时间:2023-10-17 15:00
- 热门资源推荐
- 热门放大器推荐
- 发电厂电气部分 第五版 (苗世洪)
- 发电厂电气主系统 第3版 (许珉,孙丰奇,车仁青)
- 高等电力网络分析 (张伯明,严正著)
- 实用电子元器件与电路基础 (施瓦茨)
An error occurred.
Sorry, the page you are looking for is currently unavailable.
Please try again later.
If you are the system administrator of this resource then you should check the error log for details.
Faithfully yours, OpenResty.
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况