基于DPA-Switch的四路输出开关电源设计

最新更新时间:2012-08-24来源: 21ic关键字:DPA-Switch  四路输出  开关电源 手机看文章 扫描二维码
随时随地手机看文章

    1 引言  单片开关电源集成电路具有高集成度、高性价比、外围电路简单等特点,可构成高效率、无工频变压器的隔离式开关电源。单片开关电源在成本上与同等功率的线性稳压电源相当,但其功率显著提高,体积和重量减小近一半,具有良好的应用前景。目前已有十大系列,100 多种型号的产品。 

 2 DPA- Switch 单片开关电源 

 DPA- Switch 系列定位于低功率的DC/DC 应用领域,集成了200 V 功率MOSFET 和低压控制电路。该系列器件除了具有传统DC/DC 转换器的过温保护、电流限制、前沿消隐、脉宽调

图1 DPA- Switch 内部功能模块框图

图1 DPA- Switch 内部功能模块框图  上电时,漏极端(DRAIN) 通过内部高压电流源提供内部偏置电流使系统启动,其工作电压范围为16 V~75 V.控制端(CONTROL) 通过控制电流来改变DPA- Switch 的占空比。电压检测端( LINESENCE)为过压OV、欠压UV 锁定输入引脚,用于同步和开/关控制。限流端( EXTERNAL CURRENTLIMIT) 控制限流点和开/关功能。源极端( SOURCE)作为电源参考点。选频端( FREQUENCY) 选择300kHz 或400 kHz 工作频率。  

通过控制端外接电容的充电过程实现电路的软启动。当控制端电压Vc 达到5.8 V 时,内部高压电流源关闭,此时由反馈控制电流向Vc 供电。在正常工作模式下,由外界电路构成电压负反馈控制环,调节输出级MOSFET 的占空比以实现稳压。当控制端电压低于4.8 V 时,MO上电时,漏极端(DRAIN) 通过内部高压电流源提供内部偏置电流使系统启动,其工作电压范围为16 V~75 V.控制端(CONTROL) 通过控制电流来改变DPA- Switch 的占空比。电压检测端( LINESENCE)为过压OV、欠压UV 锁定输入引脚,用于同步和开/关控制。限流端( EXTERNAL CURRENTLIMIT) 控制限流点和开/关功能。源极端( SOURCE)作为电源参考点。选频端( FREQUENCY) 选择300kHz 或400 kHz 工作频率。  通过控制端外接电容的充电过程实现电路的软启动。当控制端电压Vc 达到5.8 V 时,内部高压电流源关闭,此时由反馈控制电流向Vc 供电。在正常工作模式下,由外界电路构成电压负反馈控制环,调节输出级MOSFET 的占空比以实现稳压。当控制端电压低于4.8 V 时,MOSFET 关闭,控制电路处于小电流等待状态,内部高

 

 

 

图2 典型电压波形

3 IGBT 变频器用开关电源设计  

本电源是为应用在驱动异步电机的IGBT 变频器环境而设计的控制电源,其输入电压取自变频器主回路直流母线电容电压,输出为多路独立直流电压。其中,主输出15 V 用于驱动电路,±15 V 用于检测及模拟回路,5 V 用于接口电路。 

 开关电源技术指标: 输入直流电压范围为18V~40 V; 四路输出设计: 主输出15 V, 输出电流2.33A, 功率35 W; 其他辅助输出: 5 V 隔离输出,隔离输出2 路共地的15 V 和- 15V, 每一路的输出电流为100 mA, 总输出功率大于40 W.图3 是典型DPASwitch单端正激式开关电源电路。

图3 典型DPA- Switch 单端正激式开关电源电路

 3.1 器件选取  

实际应用中选用何种型号的DPA- Switch 器件,要根据转换器的最大输出功率、效率、散热以及成本等因素综合考虑。简便的方法是借助DPASwitch输出功率和耗散功率关系表。本设计选择DPA425R, 其最大输出功率70 W, 在输出功率50 W时,功耗为2.5 W. 

 3.2 电路结构设计  

PI Expert 电源设计软件是PI 公司开发的一种交互式软件,可以针对相关的硬件,按照用户提出的电源规范产生具体能量转换方案。PI Expert 可提供一种直观、分步的设计界面,用户可分别设定变压器、输入电容参数和所用器件。  

利用PI Expert 软件开发平台,可以方便地选择开关电源电路拓扑、器件系列、器件封装、工作频率以及其他相关特性参数。  

开关电源采用同步整流和正激变换,使得对低压大电流的整流效率得到显著提高。当输入电压为24 V 时,电源效率经PI Exper

图4 主输出系统电路框图

3.3 高频变压器设计

  高频变压器设计是电源设计的关键,可利用PIExpert 专用软件实现。

  利用最大占空比DMAX=70%计算直流侧原边和主输出次边变压器变比:

  其中,VD 为输出整流器件的正向压降; VO 为主输出电压15 V; VDS 为DPA- Switch 的漏源电压降,取1 V; R 是考虑各种杂散损耗因素后的综合系数,取0.95, 计算出匝比是1.57.

  计算出变压器次级匝数,再估算初级匝数,使变压器磁芯BM 工作在1000 Gs~1500 Gs 范围,从而减小交流磁通密度对磁芯损耗的影响。

  其中,Ae 为变压器磁芯有效面积。一般磁芯输出功率和磁芯面积的经验公式:

  Pt 为高频变压器输入输出平均值。通过对常用磁芯的特点比较,同时考虑漏磁、散热、功率等相关因素,选用铁氧体EI28 型磁芯,Ae=1.21mm2, 最大磁感应强度BS=4000×10- 4T.

  根据式( 1) 和( 2) 可知,np≈4, ns≈6.其他路变压器设计可按照如上步骤计算。

  注意:在选择绕组线径时,必须考虑趋肤效应和临近效应。绕线长度应尽可能的短,否则绕组本身的阻性损耗将不可忽略。为减小损耗,应尽可能减小变压器的漏感,推荐初级绕组和次级绕组采用间绕方式。另外,绕制变压器时无需留气隙。

  3.4 输出电感的选取

  在最大输入电压VMAX 下确定输出电感,以保证电流连续性。假设电感峰- 峰值纹波电流△f 为最大负载电流的15%~20%.

  计算出LO=121.58 μH.

  3.5 DPA- Switch 外围电路设计

  开关电源原理如图5 所示。由C1、C2、L1 组成输入EMI 滤波部分。为防止DPA- Switch 内部开关管漏极电压受初级漏感电流的影响而超出其额定值,在初级侧增加箝位网络,选SMBJ150 起到24 V限压作用。R1 设置器件的起始电压,R2 用于器件限流。C4 吸收纹波,与DPA- Switch 的CONTROL 引脚相连的R3 和C4 一起构成了反馈环路的补偿网络。D1、C5 调整过滤偏压。

图5 开关电源原理

 3.6 多路输出电路设计

  主输出采用同步整流电路,使用无源的RC 电路驱动MOSFET 整流管,可以避免栅极过电压的情况。同步整流管采用SI4804 型功率MOSFET, 其额定工作电流7.5 A , 最高反向工作电压35 V.C6通过R5 对开关管充电,VR2 限制开关管门极正向电压,在其关断时,通过C6 释放能量。R6 保证在无开关信号下,开关管始终保持关断。SL13 保证变压器重置。

  鉴于开关频率高,采用超快速恢复二极管作为阻塞二极管、输出整流管和反馈电路的整流管。选取原则: 额定工作电流至少是该路最大输出电流的3 倍; 最高反向工作电压必须高于所规定的最低耐压值的2 倍。因此,辅助输出: V02( 5 V、0.14A、0.7 W) 选取MBR745, 额定工作电流7.5 A, 最高反向工作电压为45 V; V03 ( 15 V、0.14 A、2.1W) 和V04( - 15 V、0.14 A、2.1 W) 选取UF4004, 额定工作电流为1 A, 最高反向工作电压为400 V.

  3.7 光耦反馈电路设计反馈回路的稳定性直接影响着开关电源的性能。光耦合器应提供给控制端足够的电流,电流传输比(CTR) 允许范围是50%~200%, 故选择线性光耦CNY17- 3, 其CTR 为100%~200%, 反向激穿电压70 V.

  反馈电路采用配TL431 的精密光耦反馈电路。

  R8 和R9 感应输出电压,并将信号传给TL431, C7减少TL431 高频增益。光耦通过R7 与输出连接,R7确定反馈电路增益。R11、C8、BAV19WS 用于启动时消抖。

  在辅助输出采用稳压管( 如7805) , 有助于提高输出电压线性度。

  4 应用实例

  根据以上PI Expert 电源软件设计和参数计算,设计了一个基于DPA425R 型控制电路和同步整流技术的开关电源模块,系统原理电路图如图5 所示。

  5 结束语

  本文采用DPA- Switch 设计DC/DC 正激转换器,简化了复杂的控制和保护电路,电网适应性强,工作范围宽,具有输出短路保护功能,模块体积小,可直接设计在电机驱动控制板上,调试维护方便,功率一般40 W左右即可。随着PI Expert 电源设计软件的广泛应用,可满足产品设计周期越来越短的要求。

关键字:DPA-Switch  四路输出  开关电源 编辑:探路者 引用地址:基于DPA-Switch的四路输出开关电源设计

上一篇:电动汽车有序充放电管理策略设计
下一篇:大功率开关电源降低功耗的技术方法

推荐阅读最新更新时间:2023-10-17 15:02

开关电源设计实战经验总结
开关电源的特征就是产生强电磁噪声,若不加严格控制,将产生极大的干扰。下面介绍的技术有助于降低开关电源噪声,能用于高灵敏度的模拟电路。 电路和器件的选择 一个关键点是保持dv/dt和di/dt在较低水平,有许多电路通过减小dv/dt和/或di/dt来减小辐射,这也减轻了对开关管的压力,这些电路包括ZVS(零电压开关).ZCS(零电流开关).共振模式。(ZCS的一种).SEPIC(单端初级电感转换器).CK(一套磁结构,以其发明者命名)等。 减小开关时间并非一定就能引起效率的提高,因为磁性元件的RF振荡需要强损耗的缓冲,最终可以观察到不断减弱的回程。使用软开关技术,虽然会稍微降低效率,但在节省成本和滤波/屏蔽所占用空
[电源管理]
降低开关电源开关损耗的原理
基于电感的 开关电源 (SM-PS)包含一个功率开关,用于控制输入 电源 流经电感的 电流 。大多数开关电源设计选择 MOSFET 作开关(图1a中Q1),其主要优点是MOSFET在导通状态具有相对较低的功耗。 MOSFET完全打开时的导通 电阻 (RDS(ON))是一个关键指标,因为MOSFET的功耗随导通电阻变化很大。开关完全打开时,MOSFET的功耗为ID2与RDS(ON)的乘积。如果RDS(ON)为0.02W,ID为1A,则MOSFET功耗为0.02*12=0.02W。功率MOSFET的另一功耗源是栅极 电容 的充放电。这种损耗在高开关频率下非常明显,而在稳态(MOSFET连续导通)情况下,MOSFET栅极阻抗极高,典型的
[电源管理]
降低<font color='red'>开关电源</font>开关损耗的原理
开关电源电路检修注意事项
  维修开关电源时应注意以下问题:   (1)维修无输出的电源,应通电后再断电,由于开关电源不振荡,300V滤波电容两端的电压放电会极其缓慢,电容两端的高压会保持很长时间,此时,如果用万用表的电阻挡测量电源,应先对300V滤波电容进行放电(可用一大功率的小电阻进行放电),然后才能测量,否则不但会损坏万用表,还会危及维修人员的安全。   (2)在测量电压时,一定要注意地线的正确选取,否则测试值是错误的,甚至还可能造成仪器的损坏。在测量开关电源一次电路时,应以“热地”为参考点,地线(“热地”)可选取市电整流滤波电路+300V滤波电容的负极,因为+300V滤波电容是开关电源一次电路的“标志物”,最好找。测量开关电源二次电压时
[电源管理]
饱和电感及其在开关电源中的应用
摘要:介绍了饱和电感的分类及其基本物理特性,总结了可饱和电感在尖峰抑制器、磁放大器、移相全桥ZVSPWM变换器、谐振变换器和逆变电源中的应用。 关键词:可饱和电感;尖峰抑制器;磁放大器;移相全桥;谐振变换器;逆变电源 引言 饱和电感是一种磁滞回线矩形比高,起始磁导率高,矫顽力小,具有明显磁饱和点的电感,在电子电路中常被当作可控延时开关元件来使用。由于其独特的物理特性,使之在高频开关电源的开关噪声抑制,大电流输出辅路稳压,移相全桥变换器,谐振变换器及逆变电源等方面得到了日益广泛的应用。 图1 饱和电感的B-H特性 1 饱和电感的分类及其物理特性 1.1 饱和电感的分类 饱和电感可分为自饱和和可控饱和二类。 1.1.
[电源管理]
探讨高频开关电源设计中的电磁兼容问题
  引言   开关电源与线性稳压电源相比,具有功耗小、效率高、体积小、重量轻、稳压范围宽等许多优点,己被广泛应用于计算机及其外围设备、通信、自动控制、家用电器等领域。但开关电源的突出缺点是能产生较强的电磁干扰(EMI)。EMI信号既具有很宽的频率范围,又有一定的幅度,经传导和辐射后会污染电磁环境,对通信设备和电子产品造成干扰。如果处理不当,开关电源本身就会变成一个骚扰源。目前,电子产品的电磁兼容性(EMC)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合EMC标准,已成为电子产品设计者越来越关注的问题。本文就高频开关电源设计中的电磁兼容性问题进行了探讨。   1、开关电源的组成及工作原理   1.1、组成
[电源管理]
探讨高频<font color='red'>开关电源</font>设计中的电磁兼容问题
单级功率因数校正在AC-PDP开关电源小型化设计中的应用
摘要:传统的交流等离子显示器(AC-PDP)开关电源采用的是功率因数校正加DC/DC变换的两级电路。针对其结构复杂,体积较大的缺点,设计了一种单级功率因数变换器,实现了小型化的目的。 关键词:单级功率因数校正;反激变换;彩色交流等离子显示器 引言 随着社会信息化的不断发展以及先进制作工艺的不断提高,作为大屏幕壁挂式电视和高质量多媒体信息显示的终端——彩色交流等离子体显示器(AC-PDP),其屏幕做得越来越大,功耗越来越小,电路结构越来越简单,成本也越来越低。而电源作为ACPDP的一个重要组成部分,也向着小型化和简单化的方向发展。 传统的ACPDP电源一般采用两级方案,即PFC级+DC/DC变换的电路拓扑结构。它们分别有
[电源管理]
让你一次搞定开关电源设计时PCB布局关键
  目前的交换式稳压器和电源设计更精巧、性能也更强大,但其面临的挑战之一,在于不断加速的开关频率使得PCB设计更加困难。PCB布局正成为区分一个开关电源设计好坏的分水岭。本文将就如何在第一次就实现良好PCB布局提出建议。   以一个将24V降为3.3V的3A交换式稳压器为例。乍看之下,一个10W稳压器不会太困难,所以设计师通常会忍不住直接进入建构阶段。   不过,在采用像美国国家半导体的Webench等设计软件后,我们可观察该构想实际上会遭遇哪些问题。输入上述要求后,Webench会选出该公司‘SimplerSwitcher’系列的LM25576(一款包括3AFET的42V输入组件)。它采用的是带散热垫的TSSOP-20封装。  
[电源管理]
让你一次搞定<font color='red'>开关电源</font>设计时PCB布局关键
开关电源电磁骚扰的抑制
摘要:针对开关电路电磁骚扰问题。阐述了功率开关管产生电磁骚扰的机理,以及电磁骚扰的产生原因和传播的途径。提出了选择合适的工作频率、电路元器件、缓冲电路、功率因数校正网络、屏蔽、滤波网络和接地技术来减小开关电路电磁骚扰的措施和方法。实践和试验证明,这些措施和方法对减小开关电路的电磁骚扰具有明显的效果。 关键词:开关电源;电磁骚扰;抑制 前言 随着现代科学技术的发展,开关电源被广泛应用于各种电子设备或系统之中。开关电源性能的好坏,直接影响设备或系统的正常运行。开关电路是开关电源的核心,开关电路在高频下的通、断过程产生大幅度的电压跳变,即产生的dv/dt具有较大幅度的脉冲,频带较宽且谐波丰富,是开关电源电磁骚扰的主要因素。抑制开关电路的电
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved