正向激励低噪声开关电源E类开关的特征

最新更新时间:2012-10-17来源: 维库电子关键字:正向激励  低噪声  开关电源 手机看文章 扫描二维码
随时随地手机看文章

  对于工作频率超过100kHz的开关电源,为要同时减小损耗和噪声,电路中需要采取在开关速度非常高时也不会产生噪声,或者开关速度非常低时也不会产生损耗的措施。准E类开关可解决问题后者,即开关速度非常低时也不会产生损耗;准E类开关使用高速开关器件就可解决问题前者,即开关速度非常高时也不会产生噪声。

  E类开关的特征之一是开关断开时为谐振波形,其最简单电路就是与开关器件并联电容,这样,开关器件两端电压缓慢上升,此间开关器件的电流迅速降到零。电压电流同时不为零的时间变短,因此,损耗减小了。图1所示为开关器件并联电容时的状态波形,图1中,电流降到零时电压越小其损耗就越小,若使用的电容C容量较大,开关断开时电压近似0V,然而,开关管导通时损耗增大。这时,开关器件的电流为零,虽电容中有谐振电流,但无损耗。然而,电容充电电压在导通时通过开关器件放电产生损耗。

  图1 开关器件并联电容时波形

  E类开关另一特征是开关导通时开关器件两端电压为零,为此,电容两端电压应由再次谐振降到零,电压与电流同时不为零的时间变短,损耗减小。图2所示为开关管导通时的电压和电流波形。图中,电流增大之前电压越接近0V,损耗越小。

  这样,E类开关在开关管断开和导通时都可减小损耗,开关管断开和导通时都由于产生谐振使电流或电压为零,开关管断开时变压器的漏感,或开关管导通时变压器一次绕组的电感同开关器件两端并联的电容产生谐振。由此可见,E类开关可减小损耗。

  图2 开关管导通时的电压和电流波形

  噪声是一种能量释放,若无功耗也就无噪声,若功耗在电阻上以热量形式完全消耗掉,也就无噪声,但作为热量不能完全散发掉就成为辐射噪声。电流及电压变化率越大,电流传输线路越长,或者施加电压的面积越大,则噪声电平就越高。准E类开关中使用的开关器件是高速器件,流经器件自身电流变化率较大,但由于电流传输线路短可抑制噪声的辐射。另外,与开关器件并联电容可减小线路长引起变压器的电流变化率,理论上该电容要靠近开关器件接续。安装开关器件的散热器在开关器件与电容并联时成为大面积的电极,这个大面积电极的电压变化率也随电容变小,因此,抑制了噪声的辐射。

关键字:正向激励  低噪声  开关电源 编辑:探路者 引用地址:正向激励低噪声开关电源E类开关的特征

上一篇:基于太阳能电池的原理分析
下一篇:电源功率器件的散热

推荐阅读最新更新时间:2023-10-17 15:05

对电压参考进行滤波以获得低噪声性能
输出电压相对于电压参考的短期变化即为噪声。参考电压噪声一般发生在以下两个频段:短期噪声在0.1Hz"10Hz,宽带噪声在10Hz"1kHz。由于噪声电压一般与参考电压成正比,故常用每百万分之一 (ppm) 来表示噪声,并借此使每百万分之一值恒定。能隙(或带隙)电压参考具有介于3ppm"16ppm之间的噪声电压,但埋入式齐纳电压参考的噪声更低,介于0.1ppm"0.5ppm之间。噪声随参考电流的增加而减小,但增加参考电流并不是大多数电压参考的选项。因此,改进噪声性能的有效途径是采用外部噪声滤波器。滤波器可有效地减少噪声:噪声带宽减少100倍可使噪声减少10倍。   图1a所示电路给出了一种典型的电压参考滤波器,其中负载电流流过R1,
[应用]
RIGOL开关电源测试方案
  近几年,电力电子设备与人们的工作、生活的关系日益密切,程控交换机、通讯、电子设备、控制设备等都已广泛地使用了开关电源,大大促进了开关电源技术的迅速发展。在开关电源向高频、高可靠、低耗、低噪声、抗干扰和模块化方向发展的同时,也对产品设计验证和功能测试提出了更为严格的要求。本文中将以国内测试测量厂商RIGOL(北京普源精仪科技有限责任公司)的产品为例介绍一些开关电源的常用测试方案。   本测试方案中用到的仪器分别是RIGOL DS1302CA数字示波器、DM3064数字万用表及DG系列函数/任意波形信号发生器。   数字示波器应用方案   1、瞬态响应信号测量:   负载瞬变时间是一项动态时间,它是负载电流
[电源管理]
开关电源进阶使用假负载对电路进行检修
  开关电源控制着电路中开关管的开通和关断时间,它能够持续的稳定电路当中的输出电压。是近年来发展的比较成熟的一种技术。假负载是指在某个电路或着电路的输出口中,能够接受电功率的部件被称为假负载,假负载在开关电源当中还有检测电路错误的能力,那么如何利用假负载来进行检查呢?本篇文章就将着重讨论这个问题。   当开关电源的负载出现短路时,就会使得输出电压降低,同样在负载开路或空载时输出电压会升高。在检修中一般采用假负载取代法,以区分是电源部分有故障还是负载电路有故障。关于假负载的选取,一般选取40W或60W的灯泡作假负载,优点是直观方便,根据灯泡是否发光和发光的亮度可知电源是否有电压输出及输出电压的高低。   与优点相比,缺点
[电源管理]
开关电源的技术追求和发展趋势
  随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。   传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。这种传统稳压电源技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点。但其通常都需要体积大且笨重的工频变压器与体积和重量都很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45
[电源管理]
DIP-8封装单片高压功率型开关电源模块
1 VIPer22A器件功能简介 VIPer22A型单片式开关电源功率变换器的封装形式为DIP-8:D—正端,即功率MOSFET的漏极,5﹑6﹑7﹑8脚(并联);S—负端,1﹑2脚(并联),即是功率MOSFET的源极;UDD—自给电源端,也是芯片外自激电源端,4脚;FB—输出电压反馈端,3脚。封装形式为8脚,实际只有4端,简便好记,也易于制板,如图1所示。 VIPer22A单片式开关电源功率变换器内部电路结构框图示于图2。由于器件正端和负端都通过较大电流,采用并联方式以增大容量,在绘制印制板电路图时,该两端多制成较大面积的铜箔,并在焊装VIPer22A器件时直接将器件底面压贴在这大面积铜箔上,相当于加了一个小小散
[电源管理]
DIP-8封装单片高压功率型<font color='red'>开关电源</font>模块
开关电源开机时刻的过渡过程
前面我们分析过的所有 开关电源 电路,很少提到电路过渡过程的概念,实际上,在开关电源电路中,工作开关的接通和关段,电路中电流和电压的变化过程,都是属于电路过渡过程,但我们为了分析简单,都把电路的过渡过程基本忽略掉了。如果认真对开关电源电路进行分析,输出电路中的电流一般都不是线性的或锯齿波;输出电压也不是一个矩形波或锯齿波,我们把它们当成矩形波或锯齿波,只是在一个特定条件或范围内,把它们的变化率或数值当成了一个平均值来看待。 在具有电感、电容、电阻的电路中,发生电路过渡过程的电压、电流一般都是按指数函数的曲线规律变化,正弦或者余弦函数是指数函数的特殊情况。在具有过渡过程的电路中,我们不能简单地用正弦波电路的计算方法来分析,用付
[电源管理]
<font color='red'>开关电源</font>开机时刻的过渡过程
MSP430单片机在电力系统中对开关电源控制的设计
1 引言 MSP430系列单片机是美国德州仪器(TI)1996年开始推向市场的一种16位超低功耗的混合信号处理器. 由于其超低功耗、强大的处理能力、高性能模拟技术及丰富的片上外围模块、系统工作稳定、方便高效的开发环境得到广大用户的高度评价。本文采用MSP430单片机控制开关电源时期稳定运行。 2 系统设计 本系统采用MSP430F155型号单片机实现对开关电源的稳定控制,主要包括如下几个部分:MSP430核心部分、反馈信号处理部分、信号输出给定部分、控制电路部分、通讯部分及CPU外围电路。系统总体结构如图1所示: 图1 系统总体结构 3 硬件部分设计 3.1 MSP430核心部分 MSP430F155单片机具有非常丰
[单片机]
MSP430单片机在电力系统中对<font color='red'>开关电源</font>控制的设计
MAX6126 超低噪声、高精度、低压差电压基准
MAX6126是一款超低噪声、高精度、低压差的电压基准。这一系列电压基准具有曲率校正电路和高稳定度、光刻薄膜电阻,具有3ppm/°C (最大值)的温度系数和±0.02% (最大值)出色的初始精度。专有的低噪声基准结构具有1.3µVP-P的低噪声摆幅和低至每平方根Hz 60nV的宽带噪声(2.048V输出),并且无需像其他低噪声基准源一样增大电源电流。在噪声抑制引脚外加一个0.1µF电容可以使宽带噪声进一步降至每平方根Hz 35nV,并可提高交流电源抑制能力。MAX6126串联模式基准源工作于2.7V至12.6V电源电压范围,灌入或输出电流高达10mA时输出电阻保证低于0.025Ω。这些器件可工作于-40°C至+125°C汽车级温度范
[电源管理]
MAX6126 超<font color='red'>低噪声</font>、高精度、低压差电压基准
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved