一种小型直流开关电源的反馈控制电路设计

最新更新时间:2012-10-25来源: 21IC关键字:直流  开关电源  反馈控制 手机看文章 扫描二维码
随时随地手机看文章

  目前,在各种电子设备和现代通信设备中,为了在各种不同工作条件下满足某些要求或实现规定的一些技术指标,反馈控制电路已经被广泛应用。作为电子设备和系统中的一种自动调节电路,反馈控制电路主要作用就是当电子系统受到某种扰动情况下,系统能通过自身反馈控制电路的调节作用,对系统某些参数加以修正,从而使系统各项指标仍然达到预定精度。反馈控制电路通常由比较器、控制信号发生器、可控器件和反馈网络四部分组成一个负反馈闭合环路,如图1 所示。

图1 反馈控制电路组成示意图

  本着小型化、小功率和高效率的设计思想,本文设计的反馈控制电路对应的直流开关电源主要技术要求如下:

  输入交流电压:VACMIN=85V;VACMAX=265V;输入电压频率:fL=50Hz;输出电压:VO=36V;输出功率:PO=72W;电源效率:η=80%;损耗因子Z:Z=0.6(Z 表示次级损耗与总损耗之比)。

  对应的直流开关电源组成如图2 所示。

图2 反馈控制电路对应的直流开关电源组成示意图。

  1.反馈控制电路设计过程

  开关电源中的反馈控制电路是用来保证在负载变化的情况下输出电压、电流的稳定。本文设计的反馈控制电路对应的直流开关电源是使用PWM 脉宽调制来保持输出电压的稳定。其中PWM 调制分为电流控制方式和电压控制方式,与后者相比,前者具有更好的电压调整率和负载调整率,在减少元器件数量、降低成本、提高开关电源功率的同时,又可进一步确保系统的稳定性并使系统动态特性明显改善,尤其对系统的小型化、模块化、高效化具有重要意义。

  另外,直流开关电源通常用的反馈为负反馈。在反馈中,通常采用的反馈有使用初级反馈成本最低(仅适于低功率的应用) ;使用光耦器/稳压管反馈成本低且输出精度好;另外使用光耦器/TL431 反馈则输出精度最好。考虑到本文设计所体现出的小功率、高效率的原则,所以决定采用三端分流稳压管TL431 和光耦PC817 配合的PWM 型电流调节控制方式,分别进行参考、取样、隔离、放大,从而组成负反馈环路。

  1.1 反馈控制电路原理与设计

  本文设计的反馈控制电路如图3 所示,其基本控制原理为:当输出电压经过R11和R12分压后可得到采样电压,然后该采样电压与TL431 提供的2.5V 基准参考电压加以比较,当输出电压正常时,则采样电压与TL431 的基准电压2.5V 基本相等,所以TL431 的阴极电位保持不变,流过光耦中的发光二极管的电流也保持不变,从而TOP247Y 芯片的控制脚C 的电压稳定,则控制驱动占空比不变,输出的电压就保持稳定。当输出电压与期望电压偏低时,经过分压电阻R11、R12分压后得到的分压值就比2.5V 低,TL431 的阴极电位升高,流经过光耦中发光二极管的电流减小,则流过光耦的CE 极的电流也降低,TOP247 的控制引脚C 的电位升高,使占空比增大,从而导致输出电压增大,以此来使输出保持稳定。当输出电压与期望电压偏高时,经过分压电阻R11、R12分压后得到的分压值就比2.5V 高,TL431 的阴极电位降低,流经过光耦中的发光二极管的电流增大,则流过光耦的CE 极的电流也升高,TOP247 的控制引脚C 的电位降低,使占空比减小,从而使得输出电压降低,以此来使输出稳定。

图3 反馈控制电路示意图。

1.2 TL431 及电阻分压器的参数设置与分析

  TL431 是一个可调的三端稳压管,利用外部电阻分压器可以设定2.5V-36V 范围内任意基准电压值。TL431 动态阻抗低,典型值为0.2欧姆。如图3 所示,通过电阻分压器R11 和R12 获取电压,与TL431 的基准电压2.5V 加以比较构成误差放大器,然后经过PC817 的电流变化来进一步控制TOP247Y 的输出占空比的变化。从TL431 技术参数可知,阴极工作电压的允许范围为2.5V-36V,阴极工作电流则在1~100mA 范围内变化。一般阴极电流选择为20mA,这样不但能稳定工作而且能提供一部分死电阻。

  假设流经桥分压器的电流为250uA,由于TL431 的参考电压为2.5V,则:

  又由于输出电压UO:

  所以可以得到:

  1.3 反馈补偿电路分析与设计

  在没有加入电容CZERO时,反馈环路传递函数为:

  在图3 中,不难发现,LED 在二级LC 滤波器之前连接,这也就避免了当LC 网络开始谐振时在高频区产生增益。当然,通过LC 滤波器也可以降低高频噪音。选择该滤波器谐振频率应为所选交叉频率的10倍以上以避免相互干扰。

  另外,在加上电容Czero之后,则可以得到在原点处引入一个极点,此时完整反馈环路传递函数为:

  容易发现,在原点处存在极点fpo和由快车道结构引入的极点fz.由于在本文设计中使用的为放大器类型2,因此需要在其它地方的极点fp.

  这样,我们可在输出节点与地之间加入一个电容,可以得到最终控制式:

  这样,就可以求出极点和零点位置:

  因此,下面就可以应用K 因子法来设计所需要的放大器类型2:

  交叉频率=1kHz;需要的相位裕度=70o;交叉频率处增益衰减Gfc=-20dB;交叉频率处的相位=-55o,K 因子计算为:k=4.5;fz=222kHz;fp=4.5kHz;G=10;CTR=0.8.

  根据上面已经得到的几个公式,可以得到:

  到此为止,则完成了整个关于反馈网络的设计过程。

  2.实验结果

  根据以上反馈控制电路的具体设计方案及上述数据采用HSpice进行仿真,仿真结果如图4 所示。认真观察后,从系统波形上就不难发现,系统具有明显的稳定性和可靠性。

图4 工作于DCM 或CCM 电流模式波特图。

  3.结束语

  本文通过采用光耦817 和三端分流稳压管TL431 相结合的PWM 型电流调节方式对直流开关电源的反馈控制电路进行设计,设计结果较好地体现出了小型化、小功率、高效率的特点。实验结果表明系统具有较好的稳定性和可靠性。

  随着目前开关电源模块化进程的逐步加快,使得开关电源的外围部件越来越少,因此,如何更好地确保开关电源的小巧化、智能化、高效化,以及对应电路系统的稳定性、安全性、良好的散热性能等将是笔者下一步的主要研究方向。

关键字:直流  开关电源  反馈控制 编辑:探路者 引用地址:一种小型直流开关电源的反馈控制电路设计

上一篇:基于STM32的矿用本质安全型电源设计
下一篇:基于MRF24J40的IEEE802154无线收发器电路方案设计

推荐阅读最新更新时间:2023-10-17 15:05

开关电源的抗干扰分析
引言    开关电源 产生的干扰,按噪声干扰源种类来分,可以分为尖锋干扰和谐波干扰;若按耦合通路来分,可分为传导干扰和辐射干扰,开关电路框图如图1。    2 开关电源的主要干扰   2.1 一次整流回路的干扰   开关电源中的主要噪声干扰之一是由二极管断开时的反向恢复现象引起的,一次整流回路中的整流二极管正向导通时有较大的正向电流流过,它受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失前的一段时间,电流会反向流动,从而导致很大的电流变化。即一次整流回路的干扰。    2.2 开关回路的干扰   电源工作时,开关处于高频通断状态,在高频电流环路中,可能会产生较大的
[电源管理]
<font color='red'>开关电源</font>的抗干扰分析
直流电机的工作原理
一、直流发电机工作原理 直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向。) 在图1.1所示瞬间,导体a b 、c d 的感应电动势方向分别由 b指向 a和由d 指向 c 。这时电刷 A呈正极性,电刷B 呈负极性。 图1.1 直流发电机原理模型 当线圈逆时针方向旋转180°时,这时导体c d 位于N 极下,导体a b 位于S 极下,各导体中电动势都分别改变了方向。 图1.2 直流发电机原理模型 从图看出,和电刷
[模拟电子]
<font color='red'>直流</font>电机的工作原理
开关电源可靠性设计研究
摘要: 对影响军用PWM型开关稳压电源可靠性的因素作出较为详细的分析比较,并从工程实际出发提出一些提高开关电源可靠性的建议。 关键词: 开关电源 可靠性 1 引言 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源产品可靠性设计的重要性。 2 开关电源电气可靠性设计 2.1 供电方式的选择 集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电质量,而且应用单台电源供电,当电源发生
[电源管理]
直流电机位置伺服系统驱动器设计
摘 要: 直流电机位置伺服系统是天然气发动机电子调速系统的关键组成部分。本文利用Freescale公司的MC9S12型单片机,结合电机位置反馈和电枢电流检测,研制出了数字式PWM型伺服驱动器。该驱动器充分利用单片机的内嵌资源,实现了位置、速度和电流三闭环控制策略。 关键词: 天然气发动机 直流电机 位置伺服系统 三闭环控制 随着我国能源紧缺问题的日益严峻,在生产实践中不断提高能源利用率是大势所趋。然而我国西部的大部分油田仍然存在伴生天然气大量放空的现象。为此可以将伴生天然气经简单分离处理后直接驱动大功率天然气发动机工作,使其带动发电机发电并送入电网,从而提高能源的综合利用率。因此这种天然气发动机及发电机组将具有十分广阔的
[单片机]
<font color='red'>直流</font>电机位置伺服系统驱动器设计
开关电源MOSFET驱动电路介绍及分析
  开关电源由于体积小、重量轻、效率高等优点,应用已越来越普及。MOSFET由于开关速度快、易并联、所需驱动功率低等优点已成为开关电源最常用的功率开关器件之一。而驱动电路的好坏直接影响开关电源工作的可靠性及性能指标。一个好的MOSFET驱动电路的要求是:   (1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡;   (2)开关管导通期间驱动电路能保证MOSFET栅源极间电压保持稳定使可靠导通;   (3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断;   (4)关
[电源管理]
<font color='red'>开关电源</font>MOSFET驱动电路介绍及分析
基于单片机的智能大功率直流电源设计
  引言   在大功率直流电源中,主电路一般采用晶闸管三相全控桥式整流电路,其关键在于如何准确、可靠、稳定地控制晶闸管的导通角。   目前,大功率直流电源现场应用中最为普遍的控制方式大都采用KC或KJ系列小规模集成电路,即采用三相锯齿波信号和直流控制信号相比较获得的移相信号。然而,三相锯齿波信号的斜率、占空比、幅度等与每相的器件参数密切相关,并且比较信号中小的干扰可能造成较大的相移误差,因而电路的可靠性和自动平衡能力较差。   利用单片机作为控制电路,根据三相全控桥触发脉冲之间的逻辑关系,直接产生六相高度均衡的触发脉冲,可以克服KC、KJ系列电路均衡性差的缺点。但是,由于现场系统工作在强电干扰比较严重的场合,为了
[单片机]
基于单片机的智能大功率<font color='red'>直流</font>电源设计
一种智能高频开关电源监控模块的设计
 自90年代以来,国家电信部门对通信设备的网络化管理要求逐步加快,要求组成通信网络的各种设备都必须具备智能化和通信的能力,电源设备也不例外 。计算机技术的应用,使通信电源成为集计算技术、控制技术、通信技术于一体的高科技产品,使产品的性能、功能大大提高,从而可实现系统的自动测试、自动诊断、自动控制,实现电源系统的遥信、遥测、遥控 。因此,高频开关电源也进入了智能化控制阶段。本文设计实现了一种智能高频开关电源的的监控模块。 1 高频开关电源的原理及其特点   智能化高频开关电源具有高度灵活组合、自主监控的特点,尤其是在通信领域,因其具有体积小、噪声低、维护方便又可被纳入通信系统的计算机监控系统等特点,所以运用十分广泛。高频开关电源的电
[电源管理]
一种智能高频<font color='red'>开关电源</font>监控模块的设计
基于STM32控制直流电机加减速正反转proteus仿真设计
本设计: 基于STM32控制直流电机加减速正反转proteus仿真设计(程序+仿真+设计报告+讲解视频) 仿真:proteus8.9 程序编译器:keil 5 编程语言:C语言 编号C0011 功能说明: 本设计由STM32F103、L298N电机驱动电路、按键电路组成。 1.通过按键可以控制电机,正转、反转、加速、减速、停止。 2.档位分4档,并且可以通过按键顺序正转、反转、加速、减速、停止。 3.档位可以代码自定义。 附赠相关论文,根据实物写的,与仿真功能基本一致。也有与仿真一致的设计报告。 仿真图(提供源文件): 源程序(提供源文件): 以下为部分程序: int main(void) { delay_init(
[单片机]
基于STM32<font color='red'>控制</font><font color='red'>直流</font>电机加减速正反转proteus仿真设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved