本文从彩显行输出电源电路工作原理出发,分析不同开关电源式特性,解密彩显行输出电源电路故障维修方法。
一、工作原理
从二次电源的输入、输出电压值大小看,二次电源分为升压型与降压型,通常,输入电压为50v~75v的二次电源为升压型;输入电压为160v~210v 的二次电源为降压型。另外,根据二次电源电路结构,可分为电压切换式及开关电源式两大类,其中开关电源式二次电源最为常见。
1.电压切换式
电压切换二次电源多用于早期彩显的行输出供电电路中,此方式开关电源变压器次级设计有多组电压输出,供给行输出级的电压由同步信号识别电路进行切换控制。
开机后,ic1(同步信号识别及控制电路)对输入的行同步信号(hs)频率进行识别。若识别为最低频率时,ic1控制端①、②、③脚均为低电平,控制管v2、v4、v6均截止,切换管v1、v3、v5也截止,此时行输出电路的供电电压由vd4整流、滤波后提供,其电压值最低。
若显示模式设置升高一挡后,hs信号频率升高,ic1①脚输出高电平,②、③脚为低电平,v6导通,v5导通,行输出电路的供电电压由vd3、c3整流滤波后提供,其电压值有所升高。
同理,当显示模式设置再升高一挡后,仅ic1②脚输出高电平,行输出电路供电电压由vd2、c2整流滤波后提供;当显示模式设置最高时,仅ic1③脚输出高电平,行输出电路供电电压由vd1、c1整流滤波后提供,其电压值最大。
2.开关电源式
这里所说的开关电源式二次电源与彩电中的开关电源原理相同,即电压变换管(三极管和场效应管)工作在开关状态。同样,根据开关管与负载的连接关系又有串、并联型之分。
(1)并联型
三星750s彩显二次电源电路由ic401、l402、q402、d401等元件构成了升压型并联开关电源式二次电源,为行输出电路提供60v~150v的工作电压。
开关控制过程
1)接通电源后,彩显一次电源电路工作,ic401(tda4859)得电(+12v)启动ic内部的二次电源振荡器,从⑥脚输出与行频同步的驱动电压。此电压经q401驱动放大后加到q402的栅极,让q402工作在开关状态。
在q402饱和导通期间,+50v电压经l402、q402、r413、q414形成电流回路。此期间电能化为磁能储存在电流l402中,这时储能电感l402的电动势极性为左正右负。
当q402截止时,l402电动势极性变为左负右正,此时储存在l402中的能量通过d401释放给电容c409及行输出电路。l402中能量释放完毕后,就完成了一个工作周期,下一个周期结束后,q402饱和,l402储能,此时c409向行输出级供电。
从上述分析可知,供给行输出级的电压高低取决于l402中储能的多少,而l402储能的多少又与q402的饱和导通时间有关,即通过改变ic401⑥脚输出信号的占空比,就可控制开关管q502的导通时间,从而控制二次电源的输出电压。
2)稳压控制
若因某种原因二次电源输出电压升高时,行输出变压器t501⑤~⑦绕组的感应电压也会升高。此感应电压r511限流及经d501、c505整流滤波后得到的直流电压上升(此电压一路经r506、r504加到ic401的⑤脚电压误差反样比较控制输出),ic401内部电路对⑤脚电压变化检测后,⑥脚输出的脉冲信号占空比减小,缩短了一个周期内q402的导通时间,l402中的储能减少,从而使二次电源输出电压降低至正常值,达到了稳压的目的。
同样,若二次电源输出电压降低时,ic401⑤脚电压下降,⑥脚输出的脉冲信号占空比增大,延长了一个周期那q402的导通时间,l402中的储能增加,输出电压升高至正常值。
另外,ic401⑤脚电压还受cpu 22脚(行幅度pwm控制信号输出)控制。若用户在主机上将显示器的分辨率设置提高后,显卡送给显示器行、场同步信号频率也将提高,显示器中cpu通过对输入的行、场同步信号检测后,cpu 22脚输出的pwm信号脉冲占空比减小,ic401⑤脚电压下降,与上述稳压过程一样,ic401⑥脚输出脉冲占空比增大,二次电源输出电压上升到此时分辨率所对应的电压值。若分辨率设置下降后,cpu22脚输出的pwm信号脉冲占空比增大,ic401⑤脚电压上升,二次电源输出电压下降到相应值。
3)过流保护
ic401④脚为二次电源开关管过流保护信号检测输出端;r413、r414为过流检测取样电阻。当q402过流时,r413、r414两端压降增大,一旦ic401④脚电压高于2.5v,ic401内部二次电源振荡器停止工作,⑥脚无开关脉冲输出,从而起到了过流保护作用。
4)x射线保护
若二次电源电路中稳压失控,输出电压升高时,行输出变压器t501⑤~⑦绕组感应电压增加,c505两端电压升高,经r502、r507分压后加到ic401②脚(x射线保护输入)。当ic401②脚电压高于*v后,ic401内部x射线保护电路启动,ic401⑥脚无脉冲输出。
(2)串联型
串联型二次电源的工作原理与彩电中常见的m11机心开关电源原理相似,它属于降压型二次电源,现举例说明。
lg fb775彩显二次电源电路由ic701(tda4856)、q719、l705等元件构成了降压型串联开关电源式二次电源,为行输出电路提供60v~150v的工作电压。
1) 开关控制过程
通电后,ic701得电工作,其⑥脚输出得开关脉冲经r717、q718推挽放大后,经r757、c762加到开关管q719得g极,使q719工作在开关状态。
q719饱和导通期间,一次电源输出的+175v电压经q719的s、d极及储能电感l705、 滤波电容c735形成电流回路。c735滤波得到的直流电压并向行输出级供电。
q719截至时,因l705中电流不能突变,l705中自感产生左负右正的电动势,于是l705、r759、c735、l704、d707构成电流回路,l705给c735充电。c735在获得能量并稳定电压后向行输出级供电。图中d707为续流二极管,要求使用快速整流管,如常见的ru2a。
2)稳压过程
ic701(4)脚外接由r774、c721组成的积分电路。若因某种原因使二次电源输出电压上升时,行输出变压器(5)-(8)绕阻的感应电源升高。此电源经r734、r718、r785、r719、vr701取样后送至ic701(5)脚(误差取样比较控制输入端),经ic701内部误差放大器放大后,再与(4)脚输入的锯齿波信号比较,使(6)脚输出的开关脉冲信号占空比发生变化,让开关管q719的饱和导通时间缩短,最终让输出电压下降至正常值。若输出电压下降时,控制过程与上述过程相反。
3) 软启动及静噪控制
采用tda4856的二次电源具有软启动功能。ic701(3)脚内接行输出电源误差放大输出端;外接电容c701(软启动电容)。开机瞬间,由于c710的充电,ic701(3)脚电压逐渐增大,(6)脚输出的驱动脉冲宽度也逐渐变宽到额定值,开关管q719的饱和导通时间逐渐变长至正常值。
由于行扫描电路在开机或更改显示模式瞬间,彩显需要一个同步搜索和相位锁定的过程。如果在此期间,二次电源不能及时加以控制,可能导致输出电压过高,损坏行输出管等元件。为此,该机设有静噪控制电路。开机或改变显示模式时,cpu(23)脚输出高电平,q704饱和导通,ic701(3)脚被d701钳位在0.7v左右,(6)脚无驱动脉冲输出,达到视频静噪保护的目的。
维修提示:若软启动电容漏电,二次电源输出电压低甚至为0;若软启动电容无容量或开路,电路将无软启动功能,在开机瞬间易损坏二次电源开关管。
3.具有枕形校正功能的行输出电源
近年来,纯平多频彩显也成主流,枕形失真校正已成为纯平彩显中比不可少的电路。其中,部分彩显的枕形失真校正功能由行输出电源完成,不再单独设置枕形失真校正电路。下面以i%26amp;sup2;c总线控制行场扫描处理电路――tda9109(ic1)为例加以说明。
ic1、q1、q2、q3、l等元件构成了并联型开关或二次电源电路;行输出变压器(3)-(4)为二次电源电压取样绕阻;ic1(15)脚为+b电压误差取样比较控制输入端。该电路的开关、稳压、保护过程与上文图2所示电路基本相同,下面仅介绍其东西枕校过程。
ic1(24)脚是东西枕形失真校正信号输出端,输出场抛物波电压,此电压经r2送到ic1(15)脚。ic1内部的行输出电源pwm控制电路对(15)脚输入的误差电压进行分析放大后,从(28)脚输出被场抛物波调制后的驱动脉冲。这样二次电源送给行输出级的电压也就按照抛物波规律变化,从而使行扫描电流被场频抛物波调制,实行东西枕形校正的目的。
为了确保滤波电容c3两端电压随场频抛物波变化,c3常采用无极性、小容量电容,甚至去掉此电容。
上一篇:关于低压差线性稳压器在开关电源中优缺点
下一篇:VRLA 蓄电池维护电路及其工作原理简介
推荐阅读最新更新时间:2023-10-17 15:05
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC