AC-DC电源的设计

最新更新时间:2012-11-06来源: 21ic关键字:AC-DC  电源 手机看文章 扫描二维码
随时随地手机看文章

1、输入整流滤波单元

本设计电源的输入电压是50Hz交流电压85~265Vac,需要整流成直流再参与变换。最简单的方法是整流桥整流,50Hz交流电压经过全波整流后变成脉动直流电压,再通过输入滤波电容得到直流高压。

1)整流桥的选择

整流桥的主要参数有反向峰值电压VRR(V),正向压降VF(V),平均整流电流IF(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IRM(μA)。

整流桥的反向击穿电压VRM应满足下式要求:

VRM>1.25*1.4Vinmax 即1.25*1.4*265=450 V

应选耐压600V的整流桥

整流桥额定的有效值电流为IF,应当使IF≥3IRMS。计算IRMS的公式如下:

IRMS= Is= P/η/Vs=2.5/0.75/110=30.3 mA

实际选用lA、600V的整流桥,以留出一定余量。

2)输入滤波电容器的选择

铝电解电容器的额定电压的1.3倍作为电容器的浪涌电压,工作电压高于160V时,是额定工作电压+50V作为浪涌电压,这是生产厂家保证的电压,可以允许在短时间内承受此电压。电容器处于浪涌电压时,电流会很大,如果时间太长,会爆开。 所以铝电容器应该选用额定电压稍高的,实际工作电压为标称额定电压的70~80%为宜,所以选用额定电压值为400V的铝电解电容。

由于模块电源体积的限制,在85~265Vac的输入范围内,前级储能铝电解电容的容值一般选取2倍于输出功率的值,即2.5*2=5,综上,铝电解电容的取值以4.7μF/400V为宜。

2、功率变压器的设计

1) 考虑到2.5W的输出功率实际很小,还有模块电源的体积限制。选择截面积足够而体积尽可能小的EPC13(Ae=12.5mm2)的铁氧体磁芯来完成功率的转换。

2) 计算ton

原边绕组开关管的最大导通时间对应在最低输出电压和最大负载时发生。 设D=ton/Ts=0.45

有:Ts=1/f=1*106/66*103=15.2 μs

ton =D* Ts =0.45*15.2=6.84 μs

3) 计算最低直流输入电压

设电源在最低电压时输出最大负载,计算输入端的直流电压。对于单项交流整流用电容滤波,直流电压不会超过交流电压有效值的1.4倍也不小于1.2倍。现取1.3倍。

即:Vs=85*1.3=110 V

4) 选择工作时的磁通密度值

已知EPC13的中心柱磁路的有效面积Ae=12.5mm2,饱和磁感应强度在100℃时是390mT,则65%的饱和值:

△Bac=390*0.65=250 mT。

5) 计算原边匝数

因为变压器输入电压是一个方波,一个导通期间的伏秒值与原边匝数关系:

Np=Vs *ton/ (△Bac * Ae )

式中 Np—原边匝数

Vs—原边直流电压

ton—导通时间

Ae—磁芯有效面积

即:

Np=Vs *ton/ (△Bac * Ae )

=110*6.84/(0.25*12.5)=240 匝

6) 计算副边匝数

输出电压5V,整流管压降0.5V,则副边绕组对应电压值为

Vo= 5+0.5=5.5V

原、副边绕组匝比为Vs*D/【Vo*(1-D)】=110*0.45/【5.5*(1-0.45)】=16.36

副边匝数Ns=240/16.36=14.7 匝,取整数15匝

7) 自供电绕组的匝数

根据VIOer12A芯片的资料,自供电电压取值为11V左右为宜,

Vf=15*(11+0.7)/(5+0.5)=31.9 匝,取整数32匝

8) 实际占空比及ton的计算

副边匝数取整数15则实际占空比为0.44,

ton=15.2*0.44=6.69 μs

9) 原边电感量的计算

设在最大占空比时,当开关管开通时,原边电流为Ip1,当开关管关断时,原边电流上升到Ip2。若Ip1为0,则说明变换器工作于断续模式,否则工作于连续模式。

设计电源工作在连续模式,这样开关管、线路的损耗都比较小,而且可以减轻输入输出电容的工作应力

设计电源工作在连续模式,由能量守恒,有下式:

1/2*(Ip1+Ip2)*D*Vs=P/η

连续模式设计,令Ip2=3Ip1

这样就可以求出变换器的原边电流,由此可以得到原边电感量:

Lp= D*Vs/(f*ΔIp)

ΔIp=Ip2-Ip1=2Ip1;

根据设计要求,电源的效率为75%,则电源全周期Ts的平均输入电流Is为

Is=P/Vs=2.5/0.75/110=30.3 mA

则ton时间内的电流

Im=ΔIp =Is*Ts/ton=30.3*15.2/6.69=68.84 mA

Ip1=Im/2=68.84/2=34.42 mA

Ip2=3Ip1=3*34.42=103.26 mA

ΔIp=Ip2-Ip1=103.26-34.42=68.84 mA

此电流等于ton时间内的电流变化量△i

Lp=Vs*ton/△i=110*6.69/68.84=10.6 mH

10) 线径的取值

设导线的电流密度为15A/m2

原边电流Im=68.84m;副边电流Io=500mA;自供电绕组电流约几十个mA

根据计算得

0.08mm铜线可走电流75mA;

0.27mm铜线可走电流860 mA;

0.15mm铜线可走电流260 mA;

所以变压器Np、Ns、Nf三个绕组的线径分别取

0.08mm;0.27mm、0.15mm;

至此,功率电源变压器的主要参数设计完成。同时,在变压器的制作中还有一些工艺问题需要注意。

3、输出整流滤波单元

本设计电源的输出电压是5Vdc,需要先把变压器变换过来的低压方波整流成直流,然后用铝电解电容储能滤波。

由于整流的工作频率等于功率开关管的开关频率,必须使用具有快速恢复功能的肖特基整流二极管作为输出整流二极管。输出整流二极管的标称电流(IF)值应为输出直流电流额定值(Io)的3倍以上,即IF1>3Io,大于1.5A;

整流管的反向耐压值的计算

输入电压的最高值/匝比=265*1.3/16.36=25.8 V

依据此原则,输出整流二极管采用2A/40V的肖特基二极管为宜,反向耐压选择稍高,有利于降低整流管上的损耗。

而整流部分使用的铝电解电容不但容量要大,还要有较低的交流电阻,,否则就无法滤除电流中的高频交流电成分,同时要考虑铝电解电容的封装体积不能过大,所以选用标称值330μF/10V的铝电解电容。

为了降低输出纹波,在电源的输出端还要增加LC滤波单元,L取10μH左右的Ф4*7的小工字电感,C取100μF/10V的铝电解电容。

4、控制反馈单元

控制反馈电路采用‘电压基准源TL431+光电耦合器P521’组合作为参考、隔离、取样(电路图见附录二)。它可以将输出电压变化控制在±1%以内。

反馈电压由输出端取样。输出电压Vo通过分压电阻R63、R64获得取样电压后,与TL431中的2.5V基准电压进行比较并输出误差电压,然后通过光电耦合器改变VIPer12A芯片的控制端电流IFB,再通过改变PWM宽度来调节输出电压Vo,使其保持不变。光电耦合器的另一作用是对原、副边进行隔离。

自供电绕组的输出电压经D31、C32整流滤波后,可给光电耦合器中的三极管提供电压。

调整控制反馈单元的任务要确定R61、R62、R63及R64的值。该电路利用输出电压与TL431构成的基准电压比较,通过光电耦合器P521二极管-三极管的电流变化去控制VIPer12A芯片的FB端,从而改变PWM宽度,达到稳定输出电压的目的。

从VIPer12A的技术手册可知IFB的典型电流应在3mA,PWM会线性变化,因此光电耦合器P521三极管的电流Ice也应应在3mA左右。而Ice是受二极管电流If控制的,我们通过光电耦合器P521的Vce与If的关系曲线可以正确确定光电耦合器P521二极管正向电流If约为5mA。

再看电压基准源TL431的要求。从TL431的技术参数知,Vka在2.5V-37V变化时,Ik可以在从1mA到100mA以内很大范围里变化,一般选20mA即可,既可以稳定工作,又能提供一部分死负载。

确定了上面几个关系后,那几个电阻的值就好确定了。根据电压基准源TL431的性能,R63、R64、Vo、Vr有固定的关系:

Vo=(1+ R63/R64) Vr

式中,Vo为输出电压,Vr为参考电压,Vr=2.50V,先取R64一个值,一般R64的取值为10kΩ,根据Vo的值就可以算出R63

R63=(Vo/ Vr-1)* R64=(5/2.5-1)* 10kΩ=10kΩ

再来确定R61和R62。由前所述,光电耦合器P521的If取5mA,先取R61的值为430Ω,则其上的压降为

Vr1=If* R61=5*430=2.2V

由光电耦合器P521技术手册知,其二极管的正向压降Vf典型值为1.1V,则可以确定R62上的压降

Vr3=Vr1+Vf=2.2+1.1=3.3 V

又知流过R62的电流Ir3=Ik-If,因此R62的值可以计算出来:

R62= Vr3/ Ir3= (Vr1+Vf)/( Ik-If) =3.3/(20-5)=220Ω

根据以上计算得出结果:

R61=430Ω、R62=220Ω、R63=10KΩ、R64=10KΩ

关键字:AC-DC  电源 编辑:探路者 引用地址:AC-DC电源的设计

上一篇:降压型PWM_AC-DC开关电源设计
下一篇:开关电源的测试项目

推荐阅读最新更新时间:2023-10-17 15:07

MINI USB DAC电源改造
购回 MINI USB DAC 后,感觉音质确有所提升,但从看到这款机器时就对其 电源 有看法,一个用 发烧 运放、阻容件的 hifi 作品,很难容忍电源上如此简陋。虽然在商品资料中看到有现成 电源 套件 ,但一来对电源这等低技术含量东西买现成的不符合 DIY 精神,二来好像那个电源也不再供货,所以就自己潇洒走一回了。 首先,理清思路。原来的电源部分应该说从 变压器 功率上是够了,关键有些不尽人意的地方,如: 1、未使用对称电源,而是用 1875 模拟,这难免在瞬态、噪声上不能令人满意; 2、电压偏低,经1875模拟 输出 电压勉强±6-7v,离opa2604
[模拟电子]
MINI USB DAC<font color='red'>电源</font>改造
阳光电源用“模块化”重新定义逆变器
模块化设计、开发和使用如今已成为现代化的应用手段。用一个个小的、独立运营的组件或模块,组合成更大的应用或系统。这就好比搭积木一般,将单个简单的零件组成小的模块,再组成各种模型样式,形成更大的势能。 当前,我国正在加速构建新型能源体系,面对新阶段、新形势,尤其是大基地项目、源网荷储一体化、风光水火储一体等新要求下,光伏产业也随之展开一系列重要的技术创新。 2021年,阳光电源抓住市场变化的风口,在光伏产业链发展瞬息万变的时局下,对传统逆变器进行重大革新,开创性推出行业第三品类—“1+X”模块化逆变器,为光伏产业带来新的产品应用与发展路径。产品在国内市场首次亮相以来,很快受到了市场的极大关注与欢迎。 应“势”而生 “1+X”模块化
[新能源]
艾默生UPS电源管理解决方案在有线数字电视系统建设中的应用
一、传统UPS电源及环境建设方案需要满足更高的需求       在当前广电行业数字化、产业化转型的关键时期,广电行业新的技术模式和业务模式对于系统的稳定运行和安全保障提出了更高要求,同样也对一切业务和应用的基础——电源以及环境系统建设提出了更多要求和新的挑战。这其中表现很突出的是有线数字电视系统的建设需求。       数字电视中心(或IDC)机房的业务目前正在蓬勃兴起,其电源管理方案的可靠性、安全性、可维护性需要得到极大的提高。在机房内的负载主要是各种计算机、服务器、磁盘阵列等负载。目前数字电视系统建设中交流不间断电源系统(UPS)的建设面临如下问题: 1)UPS的布置呈现出分散供电的状况,后级的交流用电设备取电不集中
[电源管理]
艾默生UPS<font color='red'>电源</font>管理解决方案在有线数字电视系统建设中的应用
汽车电子中的LED驱动解决方案
众所周知,LED适用于各种汽车照明元件,例如大灯、白天行车灯、雾灯、转向信号灯、内部照明、资讯娱乐的背光照明,以及组合尾灯(RCL)和高位制动灯(CHMSL)。 在建立LED供电的电子驱动解决方案时,需要考虑两个主要的DC/DC电源类别,分别是线性稳压器和开关稳压器。线性稳压器具有减少零部件数和降低电磁干扰(EMI)的优点,但在效率和热耗方面有严重的弊端。因此,开关稳压器是很多设计师的驱动解决方案首选。直流电源和需要的LED数目与类型决定了LED驱动器的拓扑结构选择。如果电源电压超出总LED电压,就需要降压转换器。如果LED组的电压超出电源电压,就需要升压转换器。最后,根据具体的条件,LED电压可能高于或低于电源电压,这样,就应该
[嵌入式]
汽车电子中的LED驱动解决方案
苹果设备太多充电伤脑筋? 这款神器为你解忧
如果你是一个重度苹果用户的话,那么iPhone,iPad自然都已经收入囊中。当然你需要充电的不仅仅是这两件产品,还有他们的附件,比如无线耳机,iPad Pro的笔……假如你外出的时候要为这么多苹果设备同时充电的话,却是一件很头疼的事情,因为你要带很多充电器。自从有了这个神器,你就只需携带一个充电器就好了。
[手机便携]
直流系统智能高频开关电源系统原理及维护
我厂350MW超临界供热机组的直流电源由高频开关电源模块、蓄电池等设备组成,智能高频开关电源系统具有体积小、重量轻、效率高、纹波系数小、动态响应快、控制精度高、模块可叠加输出、N+1冗余等特点,而在发电厂、变电站逐步取代了传统的硅整流型直流操作电源得到了广泛的使用。但调试期间,我厂#2机组的直流电源模块两次发生了充电电流波动的缺陷,原因为#2机组高频开关电源模块近邻热风口,温度高引起调节特性变化。直流系统设备维护的好坏,不仅关系到智能高频开关电源系统的可靠性和寿命,而且直接涉及到机组的控制和保护系统能否正常运行。可见,维护和使用好智能高频开关电源系统是非常重要的。 2 高频开关电源的结构和工作原理: 2.1高频开关电源的结
[电源管理]
直流系统智能高频开关<font color='red'>电源</font>系统原理及维护
如何提高低成本开关电源的效率?
 低电流开关稳压器IC通常使用达灵顿管作为输出开关。在这种情况下,电源转换效率可以借由两个便宜的元器件得到提高。   为使之成为可能,芯片上应当有一个针对 驱动器 晶体管Q1集电极的单独引脚(图1)。在启动时,D1针对Q1的集电极电流形成一条通路。此后,D1和C1形成一个电流累加整流器,增加Q1的集电极电压和电流,从而降低闭合开关Q2上的电压降。      图1:为了实现用两个元器件提升电源转换效率,芯片上应有针对 驱动器 晶体管Q1集电极的单独引脚。   该电路的另一优点是能在输入电压较低的情况下工作。由于 驱动器 集电极上的电压有所上升,电路可支持更宽的输入范围。   
[电源管理]
如何提高低成本开关<font color='red'>电源</font>的效率?
PN8368 5V1.5A高精度低功耗电源芯片
每个电路板上都有电源芯片,不管是线性电源芯片,还是开关电源芯片,都是有损耗的。一般情况下,开关电源芯片的损耗要比线性电源芯片的损耗小的多,电源管理芯片的目的是提高效率,降低功耗以此来达到绿色环保的要求,为了发挥电子系统的最佳性能,选择最适合的电源管理芯片也变得尤为重要,骊微电子推荐一款低功耗效率高的开关电源芯片PN8368。 开关电源芯片PN8368是一款应用于5-12W以内AC/DC超低待机功耗准谐振原边反馈交直流转换器,内部集成超低待机功耗准谐振原边控制器及650V高雪崩能力智能功率MOSFET,恒压控制模式采用多模式控制方式,合理的兼容了芯片的高性能、高精度和高效率。在全电压交流输入范围内,采用独有的自适应补偿专利技术,
[嵌入式]
PN8368 5V1.5A高精度低功耗<font color='red'>电源</font>芯片
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved