矩阵式三相/单相电源研究

最新更新时间:2012-11-12来源: 维库电子关键字:矩阵式  电源研究 手机看文章 扫描二维码
随时随地手机看文章

  目前矩阵式变频器因采用具有输入功率因数可调,输出频率连续,功率双向流动且无直流母线的矩阵式变换器(MC)而倍受关注。虽然三相用电设备广泛应用于生产领域,但是在一些行业(如感应加热和感应熔炼)仍需要单相电源,而在这些行业用电对电网产生严重污染,如果将矩阵式变换器(MC)应用在这些行业中将对新一代“绿色”电源产生深远的影响。在此综合考虑因不同的控制策略,低频段和高频段对系统的资源占用率不同,故采用不同的控制策略,CPU采用DSP和CPLD联合控制,实现了具有安全换流和相应的保护功能的三相-单相调功电源,该电源就很好地应用在相应的场合,充分发挥矩阵式电源的优良特性。

  l 主电路结构和换流策略

  1.1 主电路结构

  系统电路采用的是三相-单相变换电路的其中一种较为简单的拓扑结构(带中线)如图1所示。将S1+和S1-均导通的状态称为S1状态。为了尽可能多地滤除输入电流中的由开关动作产生的高频谐波中高频谐波成分,减少对电网侧的高频污染,并提高输入功率因数,因此引入滤波器,阻尼电阻Rd有利于在转折频率点后高频电流的衰减,并入电容有利于减小开关器件间的耦合。电路采用反向并联IGBT构成双向开关,通过控制各个开关状态的时间,实现目标电压。


  1.2 换流策略

  由主电路的基本特征和应用在感应加热行业就决定了矩阵式变换器在工作过程中必须遵循两个原则:矩阵式变换器的三相输入中的任意两相之间不能短路,避免使用电压源短路造成过流。矩阵式变换器的输出不能断路,避免感性负载突然断路而产生的过电压。由此可见在换流的过程中必须选择可靠的换流策略,为了解决这一问题采用传统的基于电流检测的四步换流策略较为合适。该方法必须加以电流检测元件(电流互感器、霍尔传感器等),为了保证IGBT的可靠开通与关断,将控制电压设定为:开通电压+15 V(记为1),关断电压-5 V(记为O)。为了便于说明规定电流如图1所示时记为I(+),反之I(-)。四步换流开关转换过程如图2所示,现以由S1到S2状态进行换流的四个过程进行说明,假设此时检测输出电流方向为I(+)。第一步,在开通S2-之前必须将S1-关断,否则U1和U2将通过S2+和S1-形成回路;第二步.开通S2-,如果U2>U1,此时负载电流将立刻从S1-转移到S2-,否则负载电流将继续通过S1+;第三步,在开通S2-前先关断S1+,此时负载电流已转移到S2+;第四步,开通S2-。

  当电流反向时采用相同的方法,只是开通顺序的不同。由此可见采用四步换流法,既禁止了可能是电源发生短路的组合,又保证了在任意时刻至少有一条通路,从而提高了环流的安全性。值得注意的是在换流的过程中为了避免换流出错需要锁存获取的电流方向的信息。


  2 控制策略

  由于系统的结构所决定,空间矢量调制法以及双电压控制法均不能直接应用于三相-单相矩阵式变换器中。为了使系统更为可靠合理的运行,现在必须解决分配和控制双向开关的通断来达到输出要求,在该系统中采用输入拟合法,其以设定输出电压为目标,确定适当的选择原则,并基于该原则在每个采样周期内选择相应的输入电压,拟合出目标电压。就目前得到应用的两种控制策略而言,以输入三相电压中的最大相和最小相拟合出设定的输出电压,输出电压较为平稳但是控制策略在高频段CPU资源开销大。以输入电压与输出电压的差值为选择依据,其算法简单、在高频段资源占有率低,但是在低频段电压输出波动大。

  为了使系统得到更好的性能,采用二者相互结合的控制策略,在低频段采用第一种控制策略,在高频段采用第二种策略。

  假设变换器的输入为三相理想电源电压,则:


  对于第一种策略在每个采样周期内,只利用输入电压的最大相Umax和最小相Umin合成目标输出电压U0。


  与此对应定义最大相开关函数Smax和Smin。在一个采样周期内,两个开关的导通时间T1,T2分别为:


  式中:U0为输出电压参考值;Ts为采样周期时间长度。

  在相应的控制算法下其拟合示意图如图3所示。其实质上类似于直流斩波电路,不过在此其是对交流斩波。利用该拟合方法进行输出得到的电压比较平稳。第二种控制策略较为简单在此不做详述。高频和低频控制策略的转换通过软件来实现,输出U0的频率f0可以通过人机交互装置进行设定(假如设定50 Hz以下为低频,以上为高频),其子程序结构框图如图4所示。


  3 数字控制系统组成

  检测的信号多而且要求精度高,同时产生相应的控制信号要求实时性好。这样就决定了其CPU要求特别高,为了满足这一要求,该系统采用CPU为CPLD+DSP数字控制系统(见图5)。为了使其各自的优点充分发挥,利用DSP(TMS32LF2407)的模拟输入通道接收来自信号检测调制信号模块的输入/输出信号实时计算并执行控制策略(输入拟合法),再将其运算的结果送给CPLD,CPLD根据相应的信号进行逻辑运算实现逻辑换流功能。


  在CPU运行过程中CPLD和DSP同时接收输入/输出电压电流信号,但是其实现的功能不一样:DSP接收到的信号是为了控制策略的运算,而CPLD接收的信号是为了保证每个时刻发出的控制信号的准确性,当CPLD发现故障时将进行相应处理并显示故障位置。


  4 矩阵式变换器(MC)系统实验分析

  在该系统的设计当中CPU模块采用SY-XDS510USB 2.0 DSP仿真器实现对双向开关管的控制,从而实现MC系统的部分实验,以下是不同频率下的电压电流实验的波形图,如图6所示。


  在低频段由于最大相和最小相拟合出设定的输出电压控制策略,该策略类似于直流的斩波方法,所以其输出的波形就是一斩波波形,由于和负载并入了电容,所以对负载两端的电压比较平稳。对于高频段采用的电压逼近原则,所以输出电压和电流都存在一定的波动,但是其节约了CPU的资源,提高了系统的可靠性。

  5 结语

  系统针对感应加热和感应熔炼等行业进行三相/单相电源变换,采用分频段控制策略,实现了稳定与资源的合理协调,达到了很好的效果。虽然控制方法和成本较高,但就其在功率因数以及对电网影响等各方面而言仍然远高于现有的变换方式。随着集成模块和控制方法的进步,必将矩阵变换器应用在更广阔的领域。

关键字:矩阵式  电源研究 编辑:探路者 引用地址:矩阵式三相/单相电源研究

上一篇:太阳能电池发电量实时监控系统
下一篇:估算DS2712 NiMH电池充电器的开关速度

推荐阅读最新更新时间:2023-10-17 15:08

矩阵式三相单相电源研究
目前矩阵式变频器因采用具有输入功率因数可调,输出频率连续,功率双向流动且无直流母线的矩阵式变换器(MC)而倍受关注。虽然三相用电设备广泛应用于生产领域,但是在一些行业(如感应加热和感应熔炼)仍需要单相 电源 ,而在这些行业用电对电网产生严重污染,如果将矩阵式变换器(MC)应用在这些行业中将对新一代“绿色” 电源 产生深远的影响。在此综合考虑因不同的 控制 策略,低频段和高频段对系统的资源占用率不同,故采用不同的 控制 策略,CPU采用DSP和CPLD联合控制,实现了具有安全换流和相应的保护功能的三相-单相调功电源,该电源就很好地应用在相应的场合,充分发挥矩阵式电源的优良特性。 l 主 电路 结构和换流策略 1.1 主电
[电源管理]
新型的数字式可调稳压电源的电路研究
  一、数字式可调稳压电源原理介绍   1.方案分析与选择   方案一:数控部分用单片机带动数模转换芯片提供线性稳压电压的参考电压。   优点:对于单片机,系统工作在开环状态,对数模转换的精度要求较高,设计成本低。   缺点:功耗较大,LED数码管输出显示不是系统的精确输出电压,须对它进行软件补偿。   方案二:数控部分用AVR单片机的PWM组成开关 电源 ,再利用AVR的AD转换对输出电压进行实时转换,利用软件进行电压调整以达到稳压。   优点:硬件简单,稳压的大部分工作由软件完成,对单片机的运行速度要求很高,利用手头的ATmaga16L单片机最高8MHz工作频率很难达到速度要求。对软件要求较高,功耗小。   缺点:输出纹波电
[电源管理]
新型的数字式可调稳压<font color='red'>电源</font>的电路<font color='red'>研究</font>
4×4矩阵式键盘(非中断)源程序
#include AT89X51.H #define uchar unsigned char #define uint unsigned int uchar code table ={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E,0xFF}; uchar temp; uchar key; uchar k; uchar code_h; //延时函数 void mDelay(uchar Delay) { uchar i; for(;Delay 0;Delay--) { for(i=0;i 124;i++)
[单片机]
基于Modbus的EPS应急电源监控系统的研究
1 引 言 随着环保和消防要求的提高,柴油发电机逐渐失去优势,而由于逆变技术的成熟发展,新型无公害、高可靠性、动力型的大型应急电源EPS(Emergency Power Supply)逐步成为代替柴油发电机组的“绿色电源”,目前已经在建筑领域得到大面积推广。同时,随着微处理器、计算机和数字通信技术的飞速发展,计算机控制已经扩展到了几乎所有的工业领域。将所有的功能集成于统一开放的平台上,通过人机界面可以使复杂的控制和数据处理变得更加简单。 2 监控系统设计 美国电子工业协会(EIA)制定的RS 485标准作为一种多点差分数据传输的电气规范,现已成为业界应用最为广泛的标准通信接口之一。这种通信接口允许在简单的一对双绞
[电源管理]
向宝马“复仇” 奥迪公布矩阵式激光大灯
    在激光大灯领域,宝马和奥迪从2014年CES展上就开始互相叫板了。尽管宝马早在2011年就有了成型的研究,在量产车的配装上也更为领先,但奥迪在汽车照明领域也绝对不是盖的。各种业内第一的“荣誉奖章”是信手拈来:2003年配装自适应大灯、2008年配装全LED大灯、2013年配装矩阵式LED大灯。正因为如此,当奥迪在2014年巴黎车展的R8 LMX车型上才首次于量产车上配装激光大灯,比宝马i8(参配、图片、询价)晚了好几个月时,这口气可是绝对忍不了。     现在,奥迪报仇的时候到了。就在几天前,奥迪公布了“高清矩阵式激光大灯” (iLaS)项目的最新成果。在这个由德国联邦教育研究部赞助的项目中,奥迪与博世、欧司朗以及
[汽车电子]
高亮度矩阵式的LED封装技术与解决方案
近几年发光二极管(LED)的应用在不断增长,其市场覆盖范围很广,包括像指示灯、聚光灯和头灯这样的汽车照明应用,像显示背光和照相机闪光灯这样的照相功能,像LED显示器背光和投射系统这样的消费产品,像建筑物的特色照明和标志这样的建筑应,以及许多其他方面的应用。LED亮度高、发光效率高且反应速度快。由于耗能低,使用寿命长,放热少且可发出彩色光的特点,已经在很多方面替代了白炽灯。   随着LED效率的不断提高,产生的每瓦特流明量不断增大,利用LED进行通用照明变得越来越接近实际。比如在2003年,一个相当于3000流明的荧光灯管需要采用超过1300个效率为30流明/瓦的LED才能获得相当的效果。但到2005年,获得同样的荧光灯管发光效果所
[电源管理]
高亮度<font color='red'>矩阵式</font>的LED封装技术与解决方案
基于56F803型DSP的大功率超声波电源研究
摘 要:针对大功率超声波电源高精度、高功率输出的特点.对超声波电源控制策略进行了改进。提出一种基于56F803型DSP的频率跟踪与功率调节相结合的周期分段移相控制策略.研究了基于此控制方法的超声波电源。 关键词:超声波电源;频率跟踪与功率协调控制;超声波发生器;数字信号处理器;56F803 1 引言 随着科学的发展和技术的进步.超声波在超声焊接、超声清洗、干燥、雾化、导航、测距、育种等领域的应用日趋广泛。现在的大功率超声波电源大都采用频率跟踪控制或功率控制。这种单一控制方法不仅会降低超声波电源效率,而且会影响输出精度和强度。如何使超声波电源根据实际负载实时,动态调节输出谐振频率和功率,从而保证超声波加工等操作的要求具有重要的
[嵌入式]
基于频率跟踪型PWM控制的臭氧发生器电源研究
摘要:介质阻挡放电型臭氧发生器电源负载呈容性,随负载外加电压的升高,间隙放电逐渐增强,其总的负载等效电容逐渐变大。针对负载的这一特点,提出了一种对负载谐振型高频逆变电源输出电流进行闭环频率跟踪的PWM控制策略。这种策略逻辑明确,控制性能优越,实现简单、可靠。针对在实现过程中的关键问题,提出新的解决方法。所有的分析都得到实验验证。 关键词:容性负载;频率跟踪;PWM控制 1 概述 臭氧的强氧化能力和杀菌能力使其在水处理、化学氧化、食品加工和医疗卫生等许多领域具有广泛的应用 。臭氧发生器的物理结构和等效电路如图1所示。当臭氧发生器负载两端的外加电压低于气体放电起始电压Vs时,放电通道不发生放电现象,此时臭氧发生器可以等效为放电
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved