工作在高频率的简单锯齿波发生器

最新更新时间:2012-12-18来源: 与非网关键字:脉冲宽度调制  施密特触发器  RTCT网络 手机看文章 扫描二维码
随时随地手机看文章

脉冲宽度调制信号发生器电路通常会使用一个模拟锯齿波振荡器功能,但它也可以用于其它应用。图1中是一只廉价的锯齿波发生器,它用于频率可高达10MHz甚至更高的小功率应用,以及那些对斜坡线性度和频率精度要求不高的应用。

电路使用了一只施密特触发器作为反相器,接成一个经改进的非稳态多谐振荡器。输出波形是时序电容CT上的电压,它在反相器的上、下阈值电压之间作斜升变化。以恒压为RTCT网络充电的结果就产生了斜坡,因此其响应是指数型的,只有在指数上升的初期才接近于线性。

图1,可以使用CT斜坡的充电与快速放电来产生一个锯齿波。施密特触发器的上、下触发点电压限制了锯齿波。VCC、CT和RT值见正文。

提高线性度的一个简单技巧是:用较大的电压源为RTCT网络充电。电容C1的值至少是CT的10倍以上,它用作一个电荷泵。在锯齿波下降沿上,栅极输出为低时,电容C1通过二极管D1快速充电至VCC减去D1的正向电压。同时,CT则快速地通过D2放电。

当CT电压的下降达到施密特触发器的下触发点时,栅极输出VT-返回为高。C1上的电荷使D1的负极电压等于电容C1电压与栅极高输出电压之和。D1成为反偏,而随着栅极的高输出电压,RTCT网络开始充电到C1上的电压。当CT达到施密特触发器的上触发点时,栅极的输出VT+回到低,如此循环重复。

斜坡线性度与VCC与V DD电源电压之和成正比。因为VDD固定为5V,如果VCC可以确定一个高于反相器的值,则可以提高斜坡的线性度。用下式可以估计斜坡的非线性误差:

 


分比,MI是斜坡的初始斜率,而MF则是斜坡的最终斜率,且

用CT=100pF和RT=2.2kΩ做电路的模拟,并认可上式理论计算的值,就可以得到当VCC和VDD均为5V时,斜坡的非线性误差为28%;而当VCC为1 0 V , V D D为5 V时,误差为18%;VCC为15V,VDD为5V时,误差为14%。

面包板电路有VDD=V C C=5 V ,CT=100pF,以及RT=2.2kΩ。IC1是一个标准的双列8 脚74HC14 , 其最大传输延迟为15ns,而VDD为5V的SN74LVC1G14反相器的延迟则为4.4ns。频率约为12.7MHz。

CT应为低泄漏薄膜电容,要选择较小的值,以减少大能量的充放电。选择的CT值要足够大,高于栅极输入电容与多余的杂散电容,这样才不会带来明显的误差。选择RT时要选足够小的值,这样负载阻抗、栅极输入以及杂散电容就不会带来明显的误差。可以采用任何CMOS施密特触发器反相器来测试电路。但为了提高频率精度,应采用有低传播延迟和大输出电流的高速逻辑系列,如德州仪器公司的单栅极SN74LVC1G14。

在使用前述公式时,应从待测电路直接测量触发阈值电压,尤其是VT-。CT通过一个有限传播延迟反相器对地快速放电,会使斜坡的低限复位到低于下阈值VT-。如果使用VT-的测量值,它考虑了这种效应,就可以补偿所产生的误差。

关键字:脉冲宽度调制  施密特触发器  RTCT网络 编辑:探路者 引用地址:工作在高频率的简单锯齿波发生器

上一篇:处理两种输入电压的双稳压器
下一篇:同时提供方波和平方根两种输入电压的电路

推荐阅读最新更新时间:2023-10-17 15:12

用单个施密特触发器对两个电阻式传感器或多个开关进行测量
在我们周围,许多捕捉信息的传感器都具有电阻性,如NTC传感器、PTC传感器、LDR传感器和接触式传感器等。如果将这类传感器的电阻转换为频率或脉冲持续时间,那么在不需要模拟数字转换器(ADC)的情况下,利用大部分的微控制器(MCU)就可以对这些参数进行测量。 从图1中可看出,配备施密特触发器(xxxx14或40106)的单相逆变器如何服务于Rs1和Rs2这两个电阻式传感器。其中一个传感器控制输出脉冲的低电平时间TL,而另外一个传感器则控制高电平时间TH。 D1和D2这两个二极管可以让高电平和低电平时间之间相互独立。R2和R4这两个电阻器并非一定要配备。如需要,可以配备R2和R4来抵消传感器的
[测试测量]
用单个<font color='red'>施密特触发器</font>对两个电阻式传感器或多个开关进行测量
IR推出多功能系列CHiL数字脉冲宽度调制控制器
国际整流器公司 (International Rectifier,简称IR),推出多功能系列CHiL数字脉冲宽度调制 (PWM) 控制器,大幅减少占位面积,并能提升多种中高端且性能极高的服务器、台式电脑及运算应用的效率。IR这六款新器件符合Intel VR12和VR12.5,以及AMD SVI1和SVI2的标准,并支持1、2回路下的1至8相位的多相位设计。 全新第三代CHiL器件包含有助于提高效率的功能,例如配备强化演算法的切相 (shedding phases) 及可变栅极驱动器,其中包括切相时的PID缩放和相位电流平衡,以确保达到最高效率。相关解决方案架构支持高端处理器的极高di/dt瞬态,同时凭借全新的自适应瞬时算法
[电源管理]
互补管施密特触发器
互补管施密特触发器 图5为互补管施密特触发器,本电路是依靠直流电位触发的施密特电路,在工作过程中。两管同时饱和或同时截止。 当ui处于低电平时,由ui和-Eb所引起的ub1为负值,BG1截止,又因R3无电源,所以BG2也截止,处于一种稳定状态。 当ui上升到高电平时,ub1达到BG1的导通阀电压,BG1开始导通,经过BG1、BG2的连锁正反馈作用。最后使BG1、BG2同时导通,这是另一种稳定状态。 R5与电路因差的大小有关,R5越大,回差就越小。 图5、互补管施密特触发器
[模拟电子]
互补管<font color='red'>施密特触发器</font>
基于单片机自动巡线轮式机器人控制系统设计
1 引言 轮式移动机器人是机器人研究领域的一项重要内容.它集机械、电子、检测技术与智能控制于一体。在各种移动机构中,轮式移动机构最为常见。轮式移动机构之所以得到广泛的应用。主要是因为容易控制其移动速度和移动方向。因此.有必要研制一套完整的轮式机器人系统。并进行相应的运动规划和控制算法研究。笔者设计和开发了基于5l型单片机的自动巡线轮式机器人控制系统。 2 控制系统总体设计 机器人控制系统由主控制电路模块、存储器模块、光电检测模块、电机及舵机驱动模块等部分组成,控制系统的框图如图1所示。 3 主控制模块设计 3.1 CPLD设计 在机器人控制系统中.需要控制多个电动机和行
[单片机]
基于脉冲宽度调制的LED驱动电路
  常见的调光有双向可控硅调光、后沿调光、ON/OFF调光、遥控调光等。可控硅调光器在传统的白炽灯等调光照明应用已久,且不用改变接线,装置成本较低,各品牌可控硅调光器的性能和规格相差不大,但是其直接应用在LED驱动场合还存在着一系列问题。   1 双向可控硅TRIAC调光原理   市面上大多数可控硅调光器基本结构如图1所示,其工作原理如下:当交流电压加双向可控硅TRIAC两端时,由于Rt、Ct组成的RC充电电路有一个充电时间,电容上的电压是从0V开始充电的,并且TRIAC的驱动极串联有一个DIAC(双向触发二极管,一般是30V左右),因此TRIAC可靠截止。当Ct上的电压上升到30V时,DIAC触发导通,TRI
[电源管理]
基于<font color='red'>脉冲宽度调制</font>的LED驱动电路
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved